RNA Modification & Editing

p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells

Mon, 06/11/2018 - 00:00
Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C, Randhawa R, Kulkarni T, Yang Z, McAllister G, Russ C, Reece-Hoyes J, Forrester W, Hoffman GR, Dolmetsch R, Kaykas A.
Nat Med. 2018 Jun 11. doi: 10.1038/s41591-018-0050-6. [Epub ahead of print]
Hui Li
Time
12:00pm

 

CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells1-3. Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells3-13. Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction 3 . The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations 14 , cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

RNA Modification & Editing
Approved
On
Speaker
Rate Presentation
No votes yet

There are no comments

Please login to post comments

Multiplexed precision genome editing with trackable genomic barcodes in yeast

Mon, 06/04/2018 - 00:00
Roy KR, Smith JD, Vonesch SC, Lin G, Tu CS, Lederer AR, Chu A, Suresh S, Nguyen M, Horecka J, Tripathi A, Burnett WT, Morgan MA, Schulz J, Orsley KM, Wei W, Aiyar RS, Davis RW, Bankaitis VA, Haber JE, Salit ML, St Onge RP, Steinmetz LM.
Nat Biotechnol. 2018 May 7. doi: 10.1038/nbt.4137. [Epub ahead of print]
Gabriel Eades
Time
12:00pm

 

Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess the phenotypic consequences of each perturbation. Here we describe a CRISPR-Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in Saccharomyces cerevisiae. MAGESTIC uses array-synthesized guide-donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased more than fivefold by recruiting donor DNA to the site of breaks using the LexA-Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.

RNA Modification & Editing
Approved
On
Speaker
Rate Presentation
No votes yet

There are no comments

Please login to post comments

Removing inherent bottlenecks in the genome engineering of iPSCs to build relevant disease models

Tue, 11/30/1999 - 00:00
David Piper, Thermo Fisher Scientific, USA
Erik Willem, Staff Scientist – Cell Biology
Time
12:00pm

Dr. Erik Willems was trained as a stem cell biologist in Brussels, Belgium where he obtained his PhD in 2007, after which he soon relocated to San Diego, California to develop his expertise in the use of pluripotent stem cells in high throughput screening assays for understanding the basic biology and disease of the developing heart at the Sanford Burnham Prebys Medical Discovery Institute. Dr. Willems then pursued his passion for the development of biotechnology tools and applications and joined Thermo Fisher Scientific in Carlsbad, California where he - as a Manager in the Cell Biology Business - currently leads pluripotent stem cell-based customer driven projects and product applications, including characterization, reprogramming, genome editing, differentiation and disease modeling with a focus on drug discovery applications. Now in the stem cell field for over 15 years, Dr. Willems published numerous peer reviewed articles including in high impact journals such as Cell Stem Cell. His key expertise encompasses pluripotent stem cell biology, differentiation, genome editing, high throughput screening and drug discovery.

RNA Modification & Editing
Approved
On
Rate Presentation
No votes yet

There are no comments

Please login to post comments

Whole-organism clone tracing using single-cell Sequencing

Thu, 04/05/2018 - 00:00
Anna Alemany, Maria Florescu, Chloé S. Baron, Josi Peterson-Maduro & Alexander van Oudenaarden.
Nature. 2018 Apr 5;556(7699):108-112. doi: 10.1038/nature25969. Epub 2018 Mar 28.
Bin Zhang
Time
12:00pm

Embryonic development is a crucial period in the life of a multicellular organism, during which limited sets of embryonic progenitors produce all cells in the adult body. Determining which fate these progenitors acquire in adult tissues requires the simultaneous measurement of clonal history and cell identity at single-cell resolution, which has been a major challenge. Clonal history has traditionally been investigated by microscopically tracking cells during development, monitoring the heritable expression of genetically encoded fluorescent proteins and, more recently, using next-generation sequencing technologies that exploit somatic mutations, microsatellite instability, transposon tagging, viral barcoding, CRISPR-Cas9 genome editing and Cre-loxP recombination. Single-cell transcriptomics provides a powerful platform for unbiased cell-type classification. Here we present ScarTrace, a single-cell sequencing strategy that enables the simultaneous quantification of clonal history and cell type for thousands of cells obtained from different organs of the adult zebrafish. Using ScarTrace, we show that a small set of multipotent embryonic progenitors generate all haematopoietic cells in the kidney marrow, and that many progenitors produce specific cell types in the eyes and brain. In addition, we study when embryonic progenitors commit to the left or right eye. ScarTrace reveals that epidermal and mesenchymal cells in the caudal fin arise from the same progenitors, and that osteoblast-restricted precursors can produce mesenchymal cells during regeneration. Furthermore, we identify resident immune cells in the fin with a distinct clonal origin from other blood cell types. We envision that similar approaches will have major applications in other experimental systems, in which the matching of embryonic clonal origin to adult cell type will ultimately allow reconstruction of how the adult body is built from a single cell.

RNA Modification & Editing
Approved
On
Rate Presentation
No votes yet

There are no comments

Please login to post comments

Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene

Thu, 02/22/2018 - 00:00
Liu XS, Wu H, Krzisch M, Wu X, Graef J, Muffat J, Hnisz D, Li CH, Yuan B, Xu C, Li Y, Vershkov D, Cacace A, Young RA, Jaenisch R.
Cell. 2018 Feb 22;172(5):979-992.e6. doi: 10.1016/j.cell.2018.01.012. Epub 2018 Feb 15.
Vanille Greiner
Time
12:00pm

 

Fragile X syndrome (FXS), the most common genetic form of intellectual disability in males, is caused by silencing of the FMR1 geneassociated with hypermethylation of the CGG expansion mutation in the 5' UTR of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/single guide RNA (sgRNA) switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state, restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation-edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish that demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.

RNA Modification & Editing
Approved
On
Speaker
Rate Presentation
No votes yet

There are no comments

Please login to post comments

Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6

Thu, 02/15/2018 - 00:00
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F.
Science. 2018 Feb 15. pii: eaaq0179. doi: 10.1126/science.aaq0179. [Epub ahead of print]
Hui Li
Time
12:00pm

Rapid detection of nucleic acids is integral for clinical diagnostics and biotechnological applications. We recently developed a platform termed SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing) that combines isothermal pre-amplification with Cas13 to detect single molecules of RNA or DNA. Through characterization of CRISPR enzymology and application development, we report here four advances integrated into SHERLOCKv2: 1) 4-channel single reaction multiplexing using orthogonal CRISPR enzymes; 2) quantitative measurement of input down to 2 aM; 3) 3.5-fold increase in signal sensitivity by combining Cas13 with Csm6, an auxilary CRISPR-associated enzyme; and 4) lateral flow read-out. SHERLOCKv2 can detect Dengue or Zika virus ssRNA as well as mutations in patient liquid biopsy samples via lateral flow, highlighting its potential as a multiplexable, portable, rapid, and quantitative detection platform of nucleic acids.

RNA Modification & Editing
Approved
On
Speaker
Rate Presentation
No votes yet

There are no comments

Please login to post comments

Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens

Mon, 12/18/2017 - 00:00
Najm FJ, Strand C, Donovan KF, Hegde M, Sanson KR, Vaimberg EW1, Sullender ME, Hartenian E, Kalani Z1, Fusi N, Listgarten J, Younger ST, Bernstein BE, Root DE, Doench JG.
Nat Biotechnol. 2017 Dec 18. doi: 10.1038/nbt.4048. [Epub ahead of print]
Gabriel Eades
Time
12:00pm

Combinatorial genetic screening using CRISPR-Cas9 is a useful approach to uncover redundant genes and to explore complex gene networks. However, current methods suffer from interference between the single-guide RNAs (sgRNAs) and from limited gene targeting activity. To increase the efficiency of combinatorial screening, we employ orthogonal Cas9 enzymes from Staphylococcus aureus and Streptococcus pyogenes. We used machine learning to establish S. aureus Cas9 sgRNA design rules and paired S. aureus Cas9 with S. pyogenes Cas9 to achieve dual targeting in a high fraction of cells. We also developed a lentiviral vector and cloning strategy to generate high-complexity pooled dual-knockout libraries to identify synthetic lethal and buffering gene pairs across multiple cell types, including MAPK pathway genes and apoptotic genes. Our orthologous approach also enabled a screen combining gene knockouts with transcriptional activation, which revealed genetic interactions with TP53. The "Big Papi" (paired aureus and pyogenes for interactions) approach described here will be widely applicable for the study of combinatorial phenotypes.

RNA Modification & Editing
Approved
On
Speaker
Rate Presentation
No votes yet

There are no comments

Please login to post comments

In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation

Thu, 12/14/2017 - 00:00
Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, Yamauchi T, Sakurai M, O'Keefe DD, Núñez-Delicado E, Guillen P, Campistol JM, Wu CJ, Lu LF, Esteban CR, Izpisua Belmonte JC.
Cell. 2017 Dec 14;171(7):1495-1507.e15. doi: 10.1016/j.cell.2017.10.025. Epub 2017 Dec 7.
Anton Ogorodnikov
Time
12:00pm

Current genome-editing systems generally rely on inducing DNA double-strand breaks (DSBs). This may limit their utility in clinical therapies, as unwanted mutations caused by DSBs can have deleterious effects. CRISPR/Cas9 system has recently been repurposed to enable targetgene activation, allowing regulation of endogenous gene expression without creating DSBs. However, in vivo implementation of this gain-of-function system has proven difficult. Here, we report a robust system for in vivo activation of endogenous target genes through trans-epigenetic remodeling. The system relies on recruitment of Cas9 and transcriptional activation complexes to target loci by modified single guide RNAs. As proof-of-concept, we used this technology to treat mouse models of diabetes, muscular dystrophy, and acute kidney disease. Results demonstrate that CRISPR/Cas9-mediated target gene activation can be achieved in vivo, leading to measurable phenotypes and amelioration of disease symptoms. This establishes new avenues for developing targeted epigenetic therapies against human diseases. VIDEO ABSTRACT.

RNA Modification & Editing
Approved
On
Speaker
Rate Presentation
No votes yet

There are no comments

Please login to post comments

Identification of Pre-Existing Adaptive Immunity to Cas9 Proteins in Humans

Fri, 01/05/2018 - 00:00
Carsten Trevor Charlesworth, Priyanka S Deshpande, Daniel P Dever, Beruh Dejene, Natalia Gomez-Ospina, Sruthi Mantri, Mara Pavel-Dinu, Joab Camarena, Kenneth I Weinberg, Matthew H Porteus
bioRxiv
Theodore Roth
Time
12:00pm

The CRISPR-Cas9 system has proven to be a powerful tool for genome editing allowing for the precise modification of specific DNA sequences within a cell. Many efforts are currently underway to use the CRISPR-Cas9 system for the therapeutic correction of human genetic diseases. The most widely used homologs of the Cas9 protein are derived from the bacteria Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (S. pyogenes). Based on the fact that these two bacterial species cause infections in the human population at high frequencies, we looked for the presence of pre-existing adaptive immune responses to their respective Cas9 homologs, SaCas9 (S. aureus homolog of Cas9) and SpCas9 (S. pyogenes homolog of Cas9). To determine the presence of anti-Cas9 antibodies, we probed for the two homologs using human serum and were able to detect antibodies against both, with 79% of donors staining against SaCas9 and 65% of donors staining against SpCas9. Upon investigating the presence of antigen-specific T-cells against the two homologs in human peripheral blood, we found anti-SaCas9 T-cells in 46% of donors. Upon isolating, expanding, and conducting antigen re-stimulation experiments on several of these donors anti-SaCas9 T-cells, we observed a SaCas9-specific response confirming that these T-cells were antigen-specific. We were unable to detect antigen-specific T-cells against SpCas9, although the sensitivity of the assay precludes us from concluding that such T-cells do not exist. Together, this data demonstrates that there are pre-existing humoral and cell-mediated adaptive immune responses to Cas9 in humans, a factor which must be taken into account as the CRISPR-Cas9 system moves forward into clinical trials.

RNA Modification & Editing
Approved
On
Speaker
Rate Presentation
No votes yet

There are no comments

Please login to post comments