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spread or metastasize like a malignant tumor 
would. Nonetheless, limiting damage to the 
host brain will be important for future stud-
ies of host–graft connectivity. For example, 
prevascularizing the organoid with endothe-
lial cells9 may bypass the need to transplant at 
such a deep and destructive location.

The lack of vascularization in brain 
organoids has been a major hurdle that mul-
tiple research groups have been working to 
solve, so Mansour et al.2 have accomplished 
quite a feat. While there have been various 
efforts to vascularize tissue constructs using 
in vitro bioengineering approaches such as 
microfluidics10, these approaches can disrupt 
the self-organizing architecture of an organoid. 
Transplantation into animals enables vascular-
ization that is more similar to the angiogenesis  
that occurs during development, and this 
approach has proved successful for organoids 
of other tissue types9,11. A common site for 
organoid transplantations is the kidney sub-
capsule. It would be interesting to test whether 
highly angiogenic sites other than the brain 
would also work with brain organoids.

The ability to achieve vascularization and 
integration of brain organoids with a host 
is a major leap in studying the developing 
human brain within the context of a whole 
organism. There is extensive interaction and 

the organoid. There is even evidence of inva-
sion by host microglia, a population that is not 
normally present in neural organoids in vitro 
owing to their non-neural origin.

The vascularization achieved by transplanta-
tion has clear advantages for cerebral organoid 
development. In particular, transplanted 
organoids do not undergo the extensive necrosis 
seen in organoids kept in vitro. Neurons in the 
innermost regions of the tissue appear healthy 
and produce extensive neural processes deco-
rated with synapses, both within the organoid 
and in regions of the host cortex where organoid-
derived axons project. Finally, the authors show 
evidence of maturing neuronal activity. Both 
calcium imaging and multielectrode recordings 
reveal active neuronal firing, with a progressive 
maturation from random firing patterns to more 
synchronized and correlated firing. This pat-
tern of activity is reminiscent of the coordinated 
bursts seen in the neonatal rodent brain7.

The improved survival of organoid tis-
sue shown by Mansour et al.2 is exciting, 
and future studies should assess neuronal 
maturation in more depth and over a more 
extended time course. Previous studies with 
cerebral organoids in vitro have also reported 
synchronized activity8, and it will be interest-
ing to test whether transplanted organoids 
show even further maturation to asynchro-
nous networks over longer timescales. One 
question is whether transplanted organoids 
can connect with the host brain. To begin to 
test this, Mansour et al.2 transiently infect 
the graft with a virus encoding channel rho-
dopsin and excite the graft while performing 
recordings in a nearby site of the host brain. 
The resulting activity is compelling; how-
ever, the degree of host–graft connectivity  
remains to be tested more thoroughly, for 
example, through retrograde labeling. 

While neurons in the grafts are still quite 
immature, and it is unlikely that human grafts 
such as these could significantly affect mouse 
cognition, it is important to consider whether 
the mice experience changes in their behavior 
or needs. Mansour et al.2 test grafted mice in 
a spatial learning experiment and, rather than 
an improvement, find slight defects compared 
with untransplanted mice. This is likely because 
a substantial portion (1–2 mm) of mouse cortex 
was removed in order to expose the underlying 
vascular bed of the choroidal fissure. 

The surgical procedure raises a potential lim-
itation of the method, namely, that the organoid 
appears to grow as a large mass in the cavity, up 
to several millimeters in size. In some ways, the 
damage to the host brain resembles that caused 
by growth of a tumor. However, the authors 
report that transplantation did not affect sur-
vival of the host, and it seems the grafts do not 

feedback between the brain and the body, and 
this interaction is lacking in existing in vitro 
methods. Integration with a host will allow 
investigation of the role of host-derived cell 
types, such as microglia and immune cell 
types. It will also allow the study of circulating 
factors like inflammatory signals or even fac-
tors coming from the gut microbiome. While 
much has been learned from the developing 
mouse brain, the approach of Mansour et al.2 
makes it possible to test hypotheses involv-
ing interactions of the brain with non-neural 
tissues, but now with the power of a human 
model system.
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Boosting the power of single-cell 
analysis
Lu wen & Fuchou Tang

Data sets from different single-cell RNA-seq experiments are combined with 
reduced technical error.

Single-cell RNA sequencing (RNA-seq) is 
transforming our understanding of complex 
biological systems. Current technologies can 
measure the transcriptomes of thousands of 
individual cells in a single experiment, enabling 
the discovery of rare cell types and cellular het-
erogeneity that cannot be identified at the pop-
ulation level. However, combining data from 
different single-cell experiments is technically 
challenging, and without good tools, there is 
no way to fully harness the wealth of data that 
is being generated. In this issue, Haghverdi  

et al.1 and Butler et al.2 describe two com-
putational approaches that correct for the 
technical errors, known as batch effects, that 
arise during meta-analysis of independent  
single-cell data sets. They show how these meth-
ods can uncover new biological variation and 
new cell types, suggesting the knowledge that 
can be gained by mining existing data sets.

Recent years have seen rapid improve-
ments in the throughput and cost of single-
cell transcriptomics3,4. These technological 
advances have enabled large-scale projects, 
such as the Human Cell Atlas5, aimed at gen-
erating transcriptome data from millions of 
single cells to identify new cell populations 
and functions. Data generation at this scale 
requires the involvement of many groups over 
long periods of time, using different reagents, 
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Both methods demonstrate excellent perfor-
mance on a variety of data sets, but given the 
complex origins and patterns of batch effects, 
it remains to be seen whether these methods 
will encounter limitations. In future work, the 
rare cell populations identified by Butler et al.2 

should be experimentally validated by inde-
pendent assays. It will also be interesting to 
see whether these methods could be used with 
other single-cell molecular profiling methods, 
such as epigenome sequencing, which have 
very different data structures8,9.

A key remaining challenge is to understand 
in more depth the diverse origins and hidden 
features of experimental batch effects. This 
information could lead to further changes in 
how single-cell data are generated and analyzed. 
Experimentally, the question could be addressed 
in part by adding spike-in RNAs for each cell. 
Currently used ERCC spike-in RNAs have short 
polyA tails (~20 nt), which have low amplifi-
cation efficiency. Spike-in RNAs with longer 
polyA tails (80–150 nt), similar to endogenous 
mRNAs in a mammalian cell, could overcome 
this inefficiency and improve quantification of 
batch effects. Cell controls could also be added 
to each experimental batch to search for tech-
nical variation3. Alternatively, controls could 
consist of reference RNAs that represent an 
‘averaged’ cell (e.g., 10 pg total RNA of a certain 
cell line from a different species). This approach 
may be preferable to using cells, which may vary 
by culture batch. Ideally, for each experimental  
batch, ~5–10% of the single cells could be split 
into two equal parts after cell lysis. Half the cells 
could be processed for RNA-seq analysis and the 
other half processed with the next batch. This 
approach, while having no effect on the remain-
ing single-cell samples, would add biologically 
representative, near-identical technical replicates 
to two batches of an experiment. In this way, the 
origins and signatures of the batch effects could 
be gradually revealed, regardless of the opera-
tors, reagents, platforms, or protocols. 

These and other new experimental and com-
putational strategies will continue to increase 
the power of single-cell RNA-seq to decode the 
enigma of human development and disease.
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for batch effects by quantifying the differences 
among these shared cell populations (Fig. 1).

Haghverdi et al.1 develop an algorithm that 
identifies pairs of cells that have similar expres-
sion profiles across batches, called mutual 
nearest neighbors (MNN). The MNN cell 
pairs are considered to be the same cell type 
or state, and systematic expression differences 
between these cells are assumed to be caused 
by a batch effect. Batch correction vectors that 
capture these high-dimensional differences are 
calculated by averaging the differences across 
many MNN pairs and are subtracted from one 
batch so that the two data sets can be merged.

Butler et al.2 use an algorithm called canoni-
cal correlation analysis (CCA), which was previ-
ously applied for integrating imaging data sets, 
such as functional MRI. The method identifies 
a shared gene correlation structure that is con-
served between data sets. Then, the data sets are 
aligned into a conserved low-dimensional space, 
enabling downstream analyses, such as unbiased 
clustering of the cells. Rare cell populations that 
do not overlap between data sets will not be 
described by this shared structure, and CCA can 
flag these populations for further analysis.

Both groups use simulated and previously 
generated single-cell RNA-seq data to validate 
their approaches and to demonstrate superior-
ity compared with limma and ComBat. Butler 
et al.2 successfully align data from interferon-
beta-stimulated and non-stimulated human 
peripheral blood mono nuclear cells and iden-
tify distinct clusters of cells that were missed by 
previous cluster analyses. Both groups test their 
algorithms on mouse hematopoietic stem cell 
and progenitor cell data generated by two labo-
ratories using two sequencing systems (the full-
length Smart-Seq2 and the 3′ MARS-Seq). They 
also apply their methods to human pancreatic 
cells generated by four laboratories using four 
systems (Cel-Seq, Cel-Seq2, Fluidigm C1, and 
Smart-Seq2). Both methods correctly merge 
the cell types that were shared between different 
batches and both methods clearly outperform 
limma and ComBat. These results demonstrate 
that both the MNN and CCA methods can cor-
rect batch effects arising in different laborato-
ries using single-cell RNA-Seq techniques as 
diverse as the full-length and 3′-end assays.

The new approaches1,2 are compatible with 
droplet-based, high-throughput technologies 
that handle tens of thousands of cells. Using 
the commercial droplet system 10X Genomics 
Chromium, both groups analyze data on 68,000 
peripheral blood mononuclear cells and 4,000  
T cells. Haghverdi et al.1 show that analysis time 
increases approximately linearly between 7,000 
and 70,000 analyzed cells. Butler et al.2 observe 
a running time of less than a half hour on a 
standard laptop for tens of thousands of cells.

assays, and sequencing platforms. Analyzing 
these data together would result in system-
atic variations known as batch effects that, if 
left uncorrected, could lead to spurious data 
interpretation. For example, the transcrip-
tomes of two cells may appear more similar 
if they are measured on the same day using 
identical experimental conditions than if they 
are profiled at different times using differ-
ent techniques. These differences could be  
interpreted as biological differences when they 
are actually technical in nature.

Statistical approaches to correct for batch 
effects, such as limma6 and ComBat7, have been 
developed for bulk RNA-seq analysis. These 
methods assume that the composition of the cell 
population in each batch is identical, which is 
not the case for single-cell data, where extensive 
technical and biological variation exists between 
individual cells. Methods to remove unwanted 
batch effects specifically from single-cell data 
are therefore needed to accurately integrate 
data from different experiments. Such data 
integration would allow analyses of much larger 
sample sizes without performing additional 
experiments, and enable comparisons between 
different cell types in different disease states. 
Comparisons between different species could 
also provide evolutionary insights into conver-
gent and divergent transcriptional programs.

Haghverdi et al.1 and Butler et al.2 describe 
important steps toward identifying and correct-
ing batch effects in single-cell transcriptional 
data. Both groups use a clever strategy that first 
identifies shared common cell populations 
across different batches of single-cell RNA-
seq data sets and then systematically corrects 

Figure 1  Accurate combination of single-cell 
data sets using mutual nearest neighbors and 
canonical correlation analysis.
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