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SUMMARY

Human breast tumors contain a breast cancer stem
cell (BCSC) population with properties reminiscent
of normal stem cells. We found 37 microRNAs that
were differentially expressed between human BCSCs
and nontumorigenic cancer cells. Three clusters,
miR-200c-141, miR-200b-200a-429, and miR-183-
96-182 were downregulated in human BCSCs, normal
human and murine mammary stem/progenitor cells,
and embryonal carcinoma cells. Expression of
BMI1, a known regulator of stem cell self-renewal,
was modulated by miR-200c. miR-200c inhibited
the clonal expansion of breast cancer cells and sup-
pressed the growth of embryonal carcinoma cells
in vitro. Most importantly, miR-200c strongly sup-
pressed the ability of normal mammary stem cells to
form mammary ducts and tumor formation driven
by human BCSCs in vivo. The coordinated downregu-
lation of three microRNA clusters and the similar
functional regulation of clonal expansion by miR-
200c provide a molecular link that connects BCSCs
with normal stem cells.

INTRODUCTION

Cancers arise in tissues and organs that contain proliferating

cells that regenerate old and damaged cells. Typically, these

tissues are maintained by stem cells that have the ability to

self-renew, a process by which the stem cells maintain the ability

to undergo extensive proliferation while preserving the undiffer-

entiated state. The stem cells also produce progeny that

undergo a series of cell divisions in which they become progres-

sively more differentiated before reaching maturation.

Like the tissues from which they arise, solid tumors are

composed of a heterogeneous population of cells, and many

properties of normal stem cells are shared by at least a subset
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of cancer cells (Lobo et al., 2007; Stingl and Caldas, 2007). To

maintain tissue homeostasis, normal stem cells must be able

to undergo a large number of mitoses, and in many tissues

they must be able to migrate to different regions of the organ.

Both of these properties are reminiscent of two hallmark proper-

ties of cancer cells, immortality and invasion.

The fact that tumors contain heterogeneous populations of

cells at various stages of maturation and that cancer cells share

properties of normal stem cells led to the speculation that tumors

may contain a cancer stem cell population that drives the growth

of the tumor (Bruce and Gaag, 1963; Wu et al., 1968). Genetic

studies in leukemia patients demonstrated that a primitive

leukemia cell can give rise to fully mature nonreplicating

progeny, showing that not all cancer cells have the ability to

form tumors (Fialkow, 1976a, 1976b, 1990). With improvements

in isolation of both normal and cancer stem cells, there is now

a growing body of evidence that in at least some cases of both

human and mouse leukemia, as well as human and mouse

epithelial tumors such as breast, colon, head and neck, skin,

and brain cancer, a cancer stem cell population can be enriched

based on phenotype (Al-Hajj et al., 2003; Cho et al., 2008;

Dalerba et al., 2007; Lapidot et al., 1994; Malanchi et al., 2008;

O’Brien et al., 2007; Prince et al., 2007; Ricci-Vitiani et al.,

2007; Singh et al., 2004).

MicroRNAs (miRNAs) are small noncoding regulatory RNAs

that regulate the translation of mRNAs by inhibiting ribosome

function, decapping the 50 Cap structure, deadenylating the

poly(A) tail, and degrading the target mRNA (Filipowicz et al.,

2008). miRNAs are able to regulate expression of hundreds of

target mRNAs simultaneously, thus controlling a variety of cell

functions including cell proliferation, stem cell maintenance,

and differentiation. One of the best studied miRNAs, let-7 in Cae-

norhabditis elegans, was initially identified by genetic analysis of

mutants with defects in developmental timing (Reinhart et al.,

2000). Subsequently, Dicer was identified as a key enzyme of

miRNA processing and function; Dicer null mutations result in

embryonic lethality and depletion of stem cells (Bernstein et al.,

2003). In addition, tissue-specific deletion of Dicer affects self-

renewal of embryonic stem cells, development of B lymphocyte
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lineage cells, and tissue morphogenesis (Chen et al., 2008; Davis

et al., 2008; Koralov et al., 2008). In the skin, miR-203 is a critical

regulator of stem cell maintenance (Yi et al., 2008). Deletion of

DGCR8, another key enzyme for miRNA processing, alters

silencing of self-renewal genes in embryonic stem cells (Wang

et al., 2007). These findings demonstrate that miRNAs are critical

regulators of self-renewal and differentiation.

Many of the common chromosomal amplifications and dele-

tions seen in cancer contain miRNA-coding sequences, and

some miRNAs function as oncogenes or tumor suppressor

genes (Calin et al., 2004; Esquela-Kerscher and Slack, 2006).

For example, dysregulation of the miR-17-92 cluster can induce

B cell lymphoma and downregulation of let-7 is associated with

tumor progression and poor prognosis of lung cancer patients

(He et al., 2005; Takamizawa et al., 2004). Expression of let-7

also prevents tumor sphere formation of breast cancer cell lines

and inhibits tumorigenicity in an in vivo xenograft tumor assay

(Yu et al., 2007). Finally, miRNA expression profiles are corre-

lated with tumor stage, progression, and prognosis of cancer

patients (Calin et al., 2005; Iorio et al., 2005).

The ability to prospectively identify an enriched population of

stem cells enables the interrogation of these cells for clues to

the molecular regulators of key stem cell functions. In this report,

we undertook a systematic comparison of the miRNAs in breast

stem/progenitor cell populations and in their differentiated

progeny, and this comparison led to the identification of new

regulators shared between normal and cancer stem cells.

RESULTS

miRNA Profiling of Human Breast and Embryonal
Carcinoma Cells
As miRNAs are critical regulators of self-renewal and differentia-

tion in both normal embryonic and adult tissue stem cells, we

compared the miRNA expression profiles between human

CD44+CD24�/lowlineage� breast cancer stem cells (BCSCs) and

the remaining lineage� nontumorigenic breast cancer cells

(NTG cells). In many patients with breast cancer, only a subset

population of CD44+CD24�/lowlineage� cancer cells is highly

tumorigenic in immunodeficient mice, as compared to the

remaining lineage� breast cancer cells (Al-Hajj et al., 2003). The

CD44+CD24�/lowlineage� cells have stem cell-like properties

such as self-renewal and differentiation and can regenerate the

original tumor from as few as 200cells, whereas tens of thousands

of the remaining lineage� nontumorigenic cancer cells cannot.

Multiplex real-time PCR was used to measure the expression of

460 miRNAs in BCSCs and NTG cells isolated from three human

breast tumors. We found that 37 miRNAs were upregulated or

downregulated in BCSCs compared to NTG cells in all three

samples analyzed (Figure 1A). The expression of these 37 differ-

entially expressed miRNAs was then measured in a total of 11

sets of human BCSCs and NTG cells, and this analysis confirmed

that these 37 miRNAs were indeed differentially expressed

(Figure 1B). Three clusters of miRNAs, the miRNA-200c-141

cluster located on chromosome 12p13, the miR-200b-200a-

429 cluster located on chromosome 1p36, and the miR-183-

96-182 cluster located on chromosome 7q32, were consistently

downregulated in human BCSCs (Figures 1B and 1C). For
example, expression of miR-200a, miR-200b, and miR-200c

was 2 to 218 times lower in BCSCs compared to NTG cells.

It is thought that the CD44+CD24�/lowlineage� cells might be

malignantcounterparts of normal mammary stem or early progen-

itor cells (Al-Hajj et al., 2003; Mani et al., 2008). Similarly, embry-

onic carcinoma cells are malignant cells that arise fromgerm cells,

which share manyproperties with pluripotent stem cells. Thus, the

expression of these miRNAs was tested in Tera-2 embryonal

carcinoma cells. Notably,Tera-2 cells either fail to expressdetect-

able levels of each of the miRNAs, or the level of expression is just

at the level of detection (Figure S1 available on line).

The miRNA seed sequence serves to direct the miRNA to its

mRNA targets (Lewis et al., 2005). Remarkably, the miR-200c-

141 cluster and the miR-200b-200a-429 cluster are formed by

two groups of miRNAs with essentially the same seed sequence

(miR-200c/miR-200b/miR-429 miRNAs, and miR-200a/miR-141

miRNAs), which suggests that they might share some common

target genes (Figure 1C). Given this similarity and the observed

expression patterns, we suggest that downregulation of all three

of the clustered miRNAs in breast cancer CD44+CD24�/low-

lineage
�

cells and Tera-2 embryonal carcinoma cells may be crit-

ical to maintaining a stem cell function in cancer cells.

miRNA Expression Connects BCSC Differentiation with
Normal Mammary Development
The functional similarities of cancer cells with normal tissue stem

cells suggest that activation of normal stem cell self-renewal and/

or differentiation pathways account for many of the properties

associated with malignancies. We therefore tested early

mammary stem and progenitor cells and more differentiated

mammary epithelial progenitor cells for the expression of the

miRNAs that are differentially expressed by BCSCs and NTG

cells. We first performed this analysis in mouse where the

mammary epithelium is better understood; CD24medCD49fhigh

CD29highSca-1� mouse mammary fat pad cells are enriched for

mammary stem cells with an ability to regenerate a whole

mammary gland in vivo. We collected the CD24medCD49fhigh

CD45�CD31�CD140a�Ter119� cells (MRUs, mammary re-

populating units) that are enriched for mammary stem cells

and the CD24highCD49flowCD45�CD31�CD140a�Ter119� cells

(MaCFCs) that are enriched for more differentiated mammary

epithelial progenitor cells (Figure 2A). We found that all three of

the clustered miRNAs that were downregulated in human BCSCs

were also downregulated in mouse MRU cells as compared to

both MaCFCs and mature epithelial cells (Figures 2B and S2).

An analysis of normal human breast epithelial cells isolated

based both on CD44 and CD24 and on the markers recently

described by Eaves and colleagues (Eirew et al., 2008) sug-

gested that most of the 37 miRNAs are also differentially ex-

pressed by early human breast progenitors (Figure S3). This

supports the notion that the differential expression of these three

miRNA clusters between BCSCs and NTG cells is a part of the

normal mammary cell developmental pathways.

miR-200c Targets BMI1
Potential molecular targets of miR-200bc/429 were predicted by

TargetScan 4.2 (http://www.targetscan.org/) (Lewis et al., 2005).

Among the potential targets, we focused on BMI1 because it
Cell 138, 592–603, August 7, 2009 ª2009 Elsevier Inc. 593
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possessed critically conserved nucleotides indicative of a legiti-

mate target and is known to be essential in regulating self-

renewal and differentiation of other stem cell types, including

hematopoietic, brain, and mammary stem cells (Molofsky

et al., 2005; Park et al., 2003; Pietersen et al., 2008).

The ability of miR-200c to regulate the 30 untranslated region

(UTR) of BMI1 was evaluated via luciferase reporter assays.

HEK293 cells, which did not express miR-200c and miR-429

and expressed barely detectable levels of miR-200b (data not

shown), were used. The 30UTR target sites of BMI1 were cloned

into pGL3-Control vector, downstream of a luciferase minigene

(Figure 3A). HEK293 cells were cotransfected with a pGL3 lucif-

erase vector, pRL-TK Renilla luciferase vector, and miR-200c

precursor RNA. We observed that the cotransfection of the

miR-200c precursor suppressed the luciferase activity of the

vector with the wild-type BMI1 30UTR by 35% (Figure 3B); more-

over, mutation of the miRNA-200bc/429 seed region within the

A

B
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Figure 1. Profile of Human Breast Cancer

Stem Cell miRNA Expression

(A) Screening of expression of 460 miRNAs in

human breast cancer stem cells (BCSCs). The

details of the screen used to identify the 37

miRNAs differentially expressed by the CD44+

CD24�/lowlineage� human BCSCs and the remain-

ing lineage� nontumorigenic cancer cells (NTG

cells) are shown schematically.

(B) Expression profile of 37 miRNAs in human

BCSCs. Flow cytometry was used to isolate

BCSCs and NTG cells from 11 human breast

cancer samples (BC1 to BC11). The amount of

miRNA expression (Ct value) in 100 sorted cancer

cells was analyzed by multiplex quantitative real-

time PCR. Numbers represent the difference of

Ct values (DCt) obtained from BCSCs and NTG

cells.

(C) A schematic representation of the three miRNA

clusters downregulated in human BCSCs. The

miRNAs sharing the same seed sequence (from

2 to 7 base pairs) are marked by the same color.

BMI1 30UTR abrogated the repressive

ability of the miRNA, demonstrating spec-

ificity of the target sequence for BMI1

(Figures 3A and 3B). The ability of miR-

200c to regulate the endogenous BMI1

protein was also tested. To do this,

HEK293T cells were transfected with

a miR-200c precursor and cells were

cultured for 7 days. Western blotting

showed that BMI1 protein expression

was decreased in cells transfected by

miR-200c (Figure 3C).

miR-200c Suppresses Cancer Cell
Growth and Induces Differentiation
The observation that the same clusters

of miRNAs were downregulated in normal

mammary stem cells, tumorigenic CD44+

CD24-/lowlineage� breast cancer cells,

and embryonal carcinoma cells implies that these miRNAs are

regulators of critical stem cell functions such as self-renewal

and/or differentiation. In addition to suppressing the expression

of BMI1, a gene critical for self-renewal in many types of stem

cells, it has recently been shown that miR-200 family miRNAs

prevent EMT (epithelial-to-mesenchymal transition) by suppress-

ing expression of ZEB1 and ZEB2, two transcriptional repressors

of E-cadherin (Christoffersen et al., 2007; Gregory et al., 2008;

Park et al., 2008). EMT is a stem cell property that has been linked

to both normal and cancer stem cells (Iwashita et al., 2003; Mani

et al., 2008). To determine how expression of these miRNAs

affects cells, we infected Tera-2 embryonal carcinoma cells

with lentivirus that expresses miR-200c. The morphology of

Tera-2 cells infected with miR-200c lentiviruses suggested that

they had differentiated (Figure 4A). Indeed, staining with anti-

neuron-specific class IIIb tubulin (TUJ1) antibody showed that

miR-200c-infected Tera-2 cells preferentially expressed the early
594 Cell 138, 592–603, August 7, 2009 ª2009 Elsevier Inc.
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Figure 2. Profile of Downregulated miRNAs Shared between Normal Mammary Stem Cells and BCSCs

(A) Distribution of CD45�CD31�CD140a�Ter119� mouse mammary cells according to their expression of CD24 and CD49f. MRU is a population enriched for

mammary stem cells. MaCFCs are enriched for progenitors that do not regenerate a mammary duct in vivo.

(B) Expression of miRNAs in MRUs as compared to MaCFCs. The expression of the miRNAs downregulated in human BCSCs was analyzed in MRUs and MaCFCs

isolated by flow cytometry from normal mouse mammary fat pads. The level of miRNA expression in 100 MRUs or MaCFCs was measured by quantitative real-time

PCR. The analysis was repeated twice by using the two sets of samples derived from independently isolated populations of MRUs and MaCFCs. Numbers repre-

sent the difference of Ct values obtained from MRUs and MaCFCs. BC1, BC5,and BC6 represent miRNA expression of human BCSCs described in Figure 1.
postmitotic neuron marker, TUJ1 antigen, suggesting that the

miRNAs had induced neural differentiation (Figure 4B). Flow

cytometry analysis confirmed that 36% of miR-200c-expressing

Tera-2 cells expressed TUJ1 protein 10 days after infection, as

compared to 0.9% of Tera-2 cells infected with the control lenti-

virus (Figure 4C). We found that Tera-2 cells infected with the

miR-200c lentivirus, but not the control lentivirus, showed growth

retardation (Figure 4D). Preliminary experiments suggest that

miR-200c might also inhibit tumor formation in vivo (Figure S4).

miR-200c Suppresses Clonogenicity of BCSCs
MMTV-Wnt-1 murine breast tumors are composed of both

luminal and myoepithelial cells and an expanded mammary
stem cell pool (Cho et al., 2008). We infected MMTV-Wnt-1

murine breast cancer cells with a miR-200c-expressing lenti-

virus. Colony formation by the miR-200c-infected cells was

almost completely suppressed, reducing the number of colo-

nies by 96% when compared to cells infected with the control

lentivirus (Figure 5A). Flow cytometry can be used to isolate

different populations of mammary cells that are enriched for

stem cells, committed progenitor cells, or mature epithelial

cells. When grown in tissue culture, the cell fraction that is

enriched for normal mammary stem/progenitor cells (MRUs)

or MMTV-Wnt-1 BCSCs formed colonies that are bi-pheno-

typic, expressing both the myoepithelial cell cytokeratin CK14

and the epithelial cell cytokeratin CK8/18 (data not shown).
Cell 138, 592–603, August 7, 2009 ª2009 Elsevier Inc. 595



Colonies that arise from the mature epithelial cell-enriched pop-

ulation express either CK8/18 or CK19 but not CK14. Cultured

myoepithelial-enriched cells express CK14 but not CK8/18

or CK19 (Cho et al., 2008; Stingl et al., 2006). Breast cancer

cells infected with the control virus formed large colonies and

expressed CK14 and CK8/18, with an occasional cell that

expressed CK19 (Figure 5B), whereas cells infected with the

miR-200c-expressing virus formed only small aggregates of

cells that showed low levels of CK14 (Figure 5B). To prove func-

tional relevance of BMI1 regulation by miR-200c, we con-

structed a BMI1-expressing lentivirus in which the BMI1

cDNA does not contain the 30UTR sequence that is targeted

by miR-200c. Coexpression of this BMI1 transgene substan-

tially rescued the defect in colony formation of breast cancer

cells infected with the miR-200c lentivirus (Figures 5C and

5D). These results suggest that BMI1 is one of the key functional

targets of miR-200c, at least with respect to the ability of

miR-200c to suppress colony formation of breast cancer cells

in vitro.

miR-200c Suppresses Normal Mammary Outgrowth
In Vivo
The observation that the same clusters of miRNAs were downre-

gulated both in normal mammary stem cells and in tumorigenic
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Figure 3. miR-200c Targets BMI1

(A) Schematic representation of the miR-200bc/

429 target sequence within the 30UTR of BMI1.

Two nucleotides (complementary to nucleotides

6 and 8 of miR-200bc/429) were mutated in the

30UTR of BMI1. The numbers indicate the positions

of the nucleotides in the reference wild-type

sequences (NM_005180).

(B) Activity of the luciferase gene linked to the

30UTR of BMI1. The pGL3 firefly luciferase reporter

plasmids with the wild-type or mutated 30UTR

sequences of BMI1 were transiently transfected

into HEK293 cells along with 25 nM miR-200c

precursor or negative control and a Renilla lucif-

erase reporter for normalization. Luciferase activi-

ties were measured after 48 hr. The mean of the

results from the cells transfected by pGL3 control

vector was set as 100%. The data are mean and

standard deviation (SD) of separate transfections

(n = 4).

(C) Downregulation of endogenous BMI1 protein

expression by miR-200c. HEK293T cells were

transfected with 50 nM miR-200c precursor or

negative control precursor. Lysates from 7 3 105

cells were loaded in each lane and BMI1 expres-

sion was analyzed by western blotting. Expression

of b-actin was used as a control. Replicate western

blots from three independent experiments showed

a similar downregulation of BMI1.

CD44+CD24�/lowlineage� breast cancer

cells and that miR-200c regulates the

expression of the self-renewal gene

BMI1 as well as EMT suggests that these

miRNAs are regulators of normal and

cancer stem cell functions such as self-

renewal, proliferation, and/or differentiation. To clarify the role

of miR-200c in normal mammary stem cells, we infected

50,000 lineage� murine mammary cells with the miR-200c-ex-

pressing lentivirus and transplanted them into cleared mammary

fat pads of syngeneic mice. Noninfected (mock) and control

lentivirus-infected mammary cells were transplanted as controls.

Overall, 8 out of 18 transplants with noninfected mammary

cells showed formation of a mammary tree, and 11 out of 20

transplants using cells infected with a control lentivirus formed

a GFP-positive mammary tree, suggesting that lentivirus infec-

tion was highly efficient and did not perturb engraftment of

mammary cells (Figure 6A). Histological and immunohistochem-

ical analysis of mammary trees infected with control lentivirus

showed normal structure and differentiation of both luminal

and myoepithelial lineage mammary cells (Figure 6B). By

contrast, using the mammary cells infected with miR-200c-

expressing lentivirus, only 1 GFP-positive mammary tree was

formed out of 18 transplants, whereas 6 transplants formed

an aberrant, disorganized structure with a small cluster of

mammary cells (Figures 6A and 6C). Similar to the miR-200c-in-

fected breast cancer cells, the engrafted miR-200c-expressing

mammary cells exclusively expressed CK14 but not CK8/18

(Figure 6C), suggesting induction of myoepithelial cell differenti-

ation by miR-200c.
596 Cell 138, 592–603, August 7, 2009 ª2009 Elsevier Inc.
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Figure 4. Growth Suppression of Embryonal Carcinoma Cells by miR-200c

(A) Images of miRNA-expressing embryonal carcinoma cells. Tera-2 cells infected with the miRNA-expressing lentivirus were collected by flow cytometry 4 days

after infection. Tera-2 cells were cultured for 19 days and stained with Giemsa Wright staining solution.

(B) mMiR-200c enhanced differentiation of embryonal carcinoma cells. Tera-2 cells as described in (A) were stained with primary antibody against the early post-

mitotic neuron marker, TUJ1, followed by Alexa 488-labeled secondary antibody. Cells were counterstained with DAPI.

(C) Flow cytometry analysis of TUJ1 expression. Tera-2 cells infected by miR-200c-expressing lentivirus or control lentivirus were cultured for 6 days. Tera-2 cells

were permeabilized and stained by anti- TUJ1 antibody. TUJ1 expression of GFP-expressing Tera-2 cells was analyzed by flow cytometry.

(D) miR-200c inhibited the growth of embryonal carcinoma cells in vitro. Three thousand miR-200c-expressing or control Tera-2 cells were collected as described

in (A) and cultured in a 96-well plate. Total cell numbers were counted on days 7, 12, and 19. The result is the average and SD from three independent wells.
miR-200c Suppresses Tumorigenicity of Human BCSCs
We previously found that in many patients’ tumors, the

CD44+CD24�/lowlineage� cells (BCSCs) of human breast cancer

are highly enriched for cells with the ability to form a transplant-

able xenograft tumor. To evaluate the effect of miR-200c on

human BCSCs, we infected human BCSCs with the miR-200c-

expressing lentivirus. Then, 5,000 to 10,000 infected BCSCs
were injected in the mammary fat pad of the NOD/SCID mice.

Human BCSCs infected with control lentivirus formed 6 tumors

out of 13 injections, whereas miR-200c-expressing BCSCs

formed only1 tumor out of 13 injections (Figures 7A and 7B).

Tumors arising from cells infected with the control lentivirus

expressed GFP, whereas the only tumor arising from the miR-

200c-infected cells did not (Figure 7C). This suggests that the
Cell 138, 592–603, August 7, 2009 ª2009 Elsevier Inc. 597
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Figure 5. Effect of miR-200c on Clonogenicity of MMTV-Wnt-1 Murine Breast Cancer Cells

(A) The incidence of colony formation by MMTV-Wnt-1 breast cancer cells expressing miR-200c. MMTV-Wnt-1 breast cancer cells were dissociated and lineage-

positive cells were depleted using flow cytometry. Fifteen thousand breast cancer cells were infected by miR200c-expressing lentivirus and cultured on an irra-

diated 3T3 feeder layer in a 24-well plate. After 7 days of incubation, the number of colonies with more than 10 GFP-positive cells was counted. The result shows

the average and SD from four independent wells.

(B) Immunofluorescence images of colonies stained with antibodies against cytokeratins 14, 19, and 8/18. The GFP-positive colonies were marked and stained

with primary antibodies against cytokeratins followed by Alexa 488- and Alexa 594-labeled secondary antibodies. Cells were counterstained with DAPI.

(C) BMI1 rescued the MMTV-Wnt-1 breast cancer cells expressing miR-200c. Ten thousand breast cancer cells were coinfected by miR200c-expressing lenti-

virus (GFP) and BMI1-expressing lentivirus (mCherry) and cultured on irradiated 3T3 feeder layer in a 24-well plate. After 7 days of incubation, the number of

colonies with more than 10 cells expressing both GFP and mCherry was counted. The result shows the average and SD from three independent wells.

(D) Representative images of breast cancer colonies expressing both GFP and mCherry.
tumor arose from cells that were not transduced with miR-200c.

These results suggest that like their normal mammary cell coun-

terparts, the miR-200c-infected human BCSCs from this patient

lost the ability to self-renew and proliferate extensively in vivo.
598 Cell 138, 592–603, August 7, 2009 ª2009 Elsevier Inc.
DISCUSSION

Two recent studies have shown that undifferentiated tumors and

embryonic stem cells share expression of a subset of genes.
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Figure 6. miR-200c Suppresses Normal Mammary Outgrowth In Vivo
(A) Mammary outgrowths formed by control or miR-200c lentivirus-infected mammary cells. Murine mammary cells isolated from FVB/NJ mouse were infected

with an miR-200c-expressing or control lentivirus. 5 3 104 infected mammary cells were injected into cleared fat pad of the same strain mouse. The frequency of

the GFP-positive mammary trees is shown. ‘‘Other GFP-positive region’’ means a small cluster of mammary cells formed by miR-200c-infected mammary cells.

The table is a summary of three independent experiments, each with essentially identical results.

(B) Mammary tree outgrowth of control lentivirus-infected mammary cells. GFP expression (left panel), hematoxylin and eosin (H&E) staining (middle panel), and

immunostaining by cytokeratin 8/18 and cytokeratin 14 antibodies (right panel) are shown.

(C) miR-200c expression perturbed mamamry cell differentiation. GFP expression (left panel), H&E staining (middle panel), and immunostaining by cytokeratin 8/

18 and cytokeratin 14 antibodies (right panel) are shown.
However, neither study provided evidence for a functional link

between the gene expression signature and adult stem cell

biology, either normal or malignant (Ben-Porath et al., 2008;

Wong et al., 2008). The results reported here show that miR-

200c-141, miR-200b-200a-429, and miR-183-96-182 are down-

regulated in normal mammary stem cells, in human BCSCs, and

in embryonal carcinoma cells and that miR-200c modulates

expression of BMI1. In addition, our results provide a molecular

explanation, at least in part, for the increased tumorigenicity dis-

played by the subpopulation of CD44+CD24�/lowlineage� breast

cancer cells in many patients’ tumors (Al-Hajj et al., 2003; Mani

et al., 2008). The five downregulated miRNAs shared similar

seed sequences and yet mapped to two clusters on different

chromosomes. Although miRNAs that share seed sequences

do not always have completely overlapping targets, one could

speculate that there might be functional redundancy of these

families of miRNAs to maintain stem cell homeostasis and

prevent tumors, by ensuring that a single mutation does not

perturb the regulation of their targets.

The regulation of BMI1 by miR-200c is intriguing. Indeed, self-

renewal and proliferation of hematopoietic stem cells, normal
mammary stem cells, and neural stem cells are defective in

Bmi1�/�mice (Molofsky et al., 2003; Park et al., 2003; Pietersen

et al., 2008). BMI1 is a member of the Polycomb-group proteins

and is known to epigenetically repress the transcription of Hox

genes and the p16Ink4a p19Arf locus. Bmi1 represses apoptotic,

senescence, and differentiation pathways in stem cells (Park

et al., 2003). Our results suggest that these same pathways

might also be modulated by miR-200c at least in part through

BMI1. Although the stress of transplantation could accentuate

these effects on survival in miR-200c-expressing stem cells,

the observation that Bmi1 mutant mice clearly show a loss of

adult blood stem cells independent of the stresses of transplan-

tation suggests that miR-200c expression will affect stem cell

functions in the absence of this stress (Park et al., 2003). NOD/

SCID mice have functional natural killer (NK) cells that can modu-

late engraftment (Quintana et al., 2008), and it is formally

possible that miR-200c also regulates NK cell sensitivity.

However, NK cell activity cannot explain miR-200c inhibition of

engraftment of normal mouse breast stem cells in syngeneic

mice, the inhibition of colony formation of BCSCs by miR-200c

in vitro (where NK cells are not present), or the ability of Bmi1
Cell 138, 592–603, August 7, 2009 ª2009 Elsevier Inc. 599
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Figure 7. miR-200c Suppresses Tumorigenicity of Human BCSCs

(A) A representative tumor in a mouse injected with human BCSCs is shown. CD44+CD24�/lowlineage�BCSCs were isolated from an early passage human breast

xenograft tumor and infected by miR-200c-expressing lentivirus or control lentivirus. 5 3 103 or 1 3 104 infected cells were injected into the breast of immuno-

deficient NOD/SCID mice. Tumor growth was monitored for 5 months after injection.

(B) Tumor incidence of miRNA-expressing BCSCs. Six out of thirteen control lentivirus-infected BCSCs developed tumors after 5 months. One out of thirteen

miR-200c lentivirus-infected BCSCs developed a tumor that did not express the GFP transgene.

(C) GFP expression of tumors derived from control or miR-200c-expressing lentivirus-infected cells. Tumors were dissociated and GFP expression was analyzed

by flow cytometry. The lentivirus contains a GFP minigene to mark virus-infected cells.
to partially rescue colony formation by the breast cancer cells ex-

pressing miR-200c in vitro. Mutations to downstream targets of

Bmi1 such as TP53 can partially relieve stem cell dependence on

Bmi1 for self-renewal (Akala et al., 2008; Park et al., 2003). It is

therefore possible that in a subset of breast cancer patients,
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miR-200c alone might become unable to inhibit self-renewal

because of particular mutations in the cancer cells.

The difference between a self-renewing normal stem cell and

a self-renewing cancer cell is that unlike normal stem cells in

which the total number of stem cells in a tissue is highly regulated



and expansion beyond the normal level is restricted by genetic

programs (Morrison et al., 2002), there is a continuous expansion

of self-renewing cells in cancer, resulting in the development of

a tumor. From these observations, one would predict that cancer

stem cells likely share some elements of the self-renewal

machinery present in normal stem cells. Indeed the miRNA

profile described in this study shows remarkable similarities

between BCSCs and normal mammary stem cells, and some

of these miRNAs have been linked to cancer (Esquela-Kerscher

and Slack, 2006). Prediction programs such as Targetscan4.2

(Lewis et al., 2005) suggest that there are likely many genes other

than BMI1 that are regulated by these differentially expressed

miRNAs and are known to be functionally important for stem

cells. The downregulation of let-7 miRNAs in human BCSCs

was previously reported (Yu et al., 2007). Only occasionally did

we see differences in let-7 expression between BCSCs and non-

tumorigenic cancer cells in the 11 breast cancer patients that we

screened. The discrepancies in let-7 expression between these

two studies might be related to differences in tumor histology

or the genetic background of the patient populations analyzed.

Alternatively, loss of let-7 expression could have occurred

when the cell line used by Yu et al. (2007) was derived (Daniel

et al., 2009).

EMT is a widespread, developmental program that regulates

cell migration in many tissues and organs and is associated

with normal and malignant mammary stem cell function (Mani

et al., 2008). Recent studies have shown that expression of

components of the EMT pathway including SNAI2 is highest in

the CD44+CD24�/lowlineage� breast cancer cells (Liu et al.,

2007; Mani et al., 2008). Here we show that miR-200 family

miRNAs were strongly suppressed in CD44+CD24�/lowlineage�

human breast cancer cells. The miR-200 family of miRNAs tara-

gets multiple sites in the 30UTRs of ZEB1 that serve as EMT

inducers. Suppression of ZEB1 and ZEB2 upregulates expres-

sion of E-cadherin and inhibits EMT (Christoffersen et al., 2007;

Gregory et al., 2008; Park et al., 2008). Collectively these findings

begin to paint a picture of the miR-200 family miRNAs as impor-

tant regulators of multiple stem cell functions that control both

EMT and self-renewal and/or proliferation in normal mammary

stem cells and BCSCs.

We note that recently, the existence and relevance of the

prospective isolation of cancer stem cells have been challenged

(Kelly et al., 2007). Our results, however, clearly show that the

ability to prospectively isolate cancer cells that preferentially

engraft immunodeficient mice can in fact uncover valuable

information about cancer biology. Indeed, a gene signature

established from BCSCs was strongly associated with patient

prognosis (Liu et al., 2007). Whereas a previous miRNA expres-

sion screen of all the cells in a tumor failed to uncover the three

clusters of miRNAs described here, prospective isolation of the

proposed cancer stem cells resulted in the demonstration of

differential expression of miRNAs and revealed that miR-200c,

one of the downregulated miRNAs in the tumorigenic subset of

human breast cancer cells, strongly suppresses the ability of

normal stem cells to form mammary ducts and BCSCs to form

tumors. Our results support the notion that pathways important

for normal stem cells are also used by at least a subset of the

cancer cells.
In summary, the findings in this paper provide a strong molec-

ular link between normal breast stem/progenitor cells, the

CD44+CD24�/lowlineage� breast cancer cells, and embryonal

carcinoma cells. The downregulation of miR-200 family miRNAs

suggests that normal stem cells and BCSCs share common

molecular mechanisms that regulate stem cell functions such

as self-renewal, proliferation, and EMT.

EXPERIMENTAL PROCEDURES

Additional Experimental Procedures can be found in the Supplemental Data.

Cell Culture

Human embryonal kidney (HEK) 293 and 293T cells were maintained in

Dulbecco’s modified Eagle’s medium (DMEM) with 10% FBS, 100 U/ml peni-

cillin, 100 mg/ml streptomycin, and 250 ng/ml amphotericin B (Invitrogen) and

incubated at 5% CO2 at 37�C.

The human embryonal carcinoma cell line Tera-2 (HTB-106) was purchased

from ATCC and grown in modified McCoy’s medium (Invitrogen) with

100 units/ml of penicillin G and 100 mg/ml of streptomycin, supplemented

with 15% fetal bovine serum and incubated at 5% CO2 at 37�C.

Multiplex Real-time PCR Assay

Eleven sets of CD44+CD24lowlineage� BCSCs and the remaining lineage�

nontumorigenic human breast cancer cells were isolated using a BD

FACSAria sorter as previously described (Al-Hajj et al., 2003). For RNA prepa-

ration, 100 CD44+CD24lowlineage� human BCSCs and the other nontumori-

genic lineage� cancer cells were double-sorted into Trizol (Invitrogen), and

RNA was extracted following the manufacturer’s protocol. Glycogen (Invitro-

gen) was used as a carrier for precipitation. RT, pre-PCR, and the multiplex

real-time PCR for miRNA profiling were performed by multiplex real-time

PCR method as described previously (Tang et al., 2006). Briefly multiplex

reverse transcription reactions were performed with 466 sets of second strand

synthesis primers. Then multiplex pre-PCR reactions were performed with 466

sets of forward primers and universal reverse primers. The multiplex pre-PCR

product was diluted and aliquoted into 384 well reaction plates, and the abun-

dance of each miRNA was measured individually by using the 7900HT Fast

Real-Time PCR System (Applied Biosystems). Results were normalized by

the amount of small nuclear RNA expression, C/D box 96A, and C/D box84.

The difference of miRNA expression between two populations was calculated

such as DCt = normalized Ct (nontumorigenic cancer cells) � normalized Ct

(BCSCs). The Ct value was set at 40 for DCt calculation when expression of

miRNA was undetectable.

Breast Cancer Cell Colony Formation Assay

Mouse MMTV-Wnt1 tumors were digested using 200 U/ml Liberase Blend-

zyme 2 (Roche) and dissociated as described (Cho et al., 2008). Cells were

stained with anti-CD31, -CD45, and -CD140a antibodies and lineage-positive

cells were depleted by flow cytometry. Fifteen thousand cells were infected

with 20 multiplicity of infection (moi) of miR-200c-expressing lentiviruses by

spin infection for 2 hr followed by incubation at 37�C for 2 hr in DMEM/F12 sup-

plemented with 5% BSA, 2% heat-inactivated FBS, 1:50 B27, 20 ng/ml EGF,

20 ng/ml bFGF, 10 mg/ml insulin, and 10 mg/ml heparin. For coinfection exper-

iments, 10,000 cells were infected with 10 moi of miR-200c-expressing lenti-

virus and 20 moi of BMI1-expressing lentivirus. The infected cells were washed

twice with the same medium and then the medium was replaced by Epicult

medium (Stemcell technologies) with 5% FBS. The infected cells were seeded

on the 30,000 irradiated 3T3 feeder cells in the 24-well plate. The medium was

replaced again by Epicult medium without serum 24 hr after seeding, and cells

were incubated for 7 days at 5% CO2 at 37�C.

Statistical Analysis

When two groups were compared, the Student’s t test was used. Fisher’s

exact test was used to analyze the significance of in vivo experiment results.
Cell 138, 592–603, August 7, 2009 ª2009 Elsevier Inc. 601



Mammary Cell Transplantation Assay

Murine breast tissue derived from FVB/NJ mice was digested and dissociated.

Cells were stained with anti-CD31, -CD45, -CD140a, and -Ter119 antibodies,

and lineage� murine mammary cells were collected by flow cytometry or

MACS magnetic separation columns (Miltenyi Biotec). Isolated cells were

mixed with 5 moi of lentivirus and incubated for 16 hr at 5% CO2 at 37�C. Fifty

thousand lentivirus-infected cells were injected into cleared mammary fat pad

of weaning age FVB/NJ female mouse. All experiments were carried out under

the approval of the Administrative Panel on Laboratory Animal Care of Stan-

ford University.

After 6.5 to 8 weeks, GFP expression of the transplanted mammary tissue

was checked under the fluorescent microscope (Leica DMI 6000 B). For immu-

nostaining, paraffin-embedded murine mammary tissue were deparaffinized

and incubated with primary antibody (1:100 dilution for rabbit anti-cytokeratin

14 [Covance] and rat anti-cytokeratin 8/18 antibodies [Developmental Studies

Hybridoma Bank, DSHB]), followed by staining with 1:200 diluted Alexa Fluor

488-conjugated anti-rat IgG antibody and Alexa Fluor 594-conjugated anti-

rabbit IgG antibody (Invitrogen). GFP expression was analyzed by staining

with 1:30 diluted Alexa Fluor 594-conjugated anti-GFP antibody (Invitrogen).

The stained tissue was observed using a fluorescent microscope (Leica DM

4000 B).

Human Breast Cancer Xenograft Assay

The CD44+CD24lowlineage� human BCSCs (corresponding to 1.5% of cancer

cells) were isolated by flow cytometry. BCSCs were infected by 20 moi of miR-

200c-expressing lentivirus or control lentivirus by spin infection for 2 hr fol-

lowed by incubation at 37�C for 2 hr. Infected cells were washed by PBS

and were mixed with Matrigel (BD Biosciences). Five thousand or ten thousand

infected cells were injected into mammary fat pad of female NOD/SCID

mouse. All experiments were carried out under the approval of the Administra-

tive Panel on Laboratory Animal Care of Stanford University.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and four

figures and can be found with this article online at http://www.cell.com/

supplemental/S0092-8674(09)00850-2.
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