miR-342-5p Decreases Ankyrin G Levels in Alzheimer’s Disease Transgenic Mouse Models

Xiaqin Sun,¹ Yu Wu,¹ Mingxue Gu,¹ and Yan Zhang¹,*
¹State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
*Correspondence: yanzhang@pku.edu.cn
http://dx.doi.org/10.1016/j.celrep.2013.12.028
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

SUMMARY

MicroRNA alterations and axonopathy have been reported in patients with Alzheimer’s disease (AD) and in AD mouse models. We now report that miR-342-5p is upregulated in APP/PS1, PS1ΔE9, and PS1-M146V transgenic AD mice, and that this upregulation is mechanically linked to elevated β-catenin, c-Myc, and interferon regulatory factor-9. The increased miR-342-5p downregulates the expression of ankyrin G (AnkG), a protein that is known to play a critical role at the axon initial segment. Thus, a specific microRNA alteration may contribute to AD axonopathy by downregulating AnkG.

INTRODUCTION

MicroRNAs (miRNAs) are a class of short (usually 21–23 nt) non-coding RNAs (Lagos-Quintana et al., 2001) with conserved roles in Drosophila, rodents, monkeys, and humans (Ashraf et al., 2006; Elmén et al., 2008; Hollander et al., 2010; Jin et al., 2004); in mammals, over 1,000 miRNAs have been identified (Delay et al., 2012). miRNA precursors are first processed into a single-stranded miRNA that interacts with the 3’ UTR of the complementary mRNA sequences (Peters and Meister, 2007), resulting in translation repression or target degradation (Eulalio et al., 2009; Meister, 2007). A single miRNA can have up to several hundred target genes and thus may regulate multiple pathways at the same time (Baek et al., 2008; Selbach et al., 2008). Many miRNAs have demonstrated implications in neurodegenerative diseases, such as Alzheimer’s disease (AD) (Chan and Kocerha, 2012; Delay and Hébert, 2011; Delay et al., 2012), which is the most common cause of dementia in people over 65 years of age and is associated with impairments in memory, language, behavior, and cognition (Price et al., 1995).

The brains of patients with AD are characterized by the presence of senile plaques and neurofibrillary tangles (Price et al., 1995), together with axonal pathology involving dystrophic neurites decorating amyloid plaques, axonal swellings, and abnormal accumulation of axonal proteins (Bayer et al., 2001). Axonopathy and axonal transport deficits have been found in other neurodegenerative diseases as well (Roy et al., 2005; Yagishita, 1978). In this regard, abundant age-dependent axonal spheroids and myelin ovoids have been observed in the spinal cord of APP/PS1 mice, an established AD transgenic mouse model (Wirths et al., 2006). However, the cause of the axonopathy and the pathways involved in axonal abnormalities in AD remain largely unknown. The axon initial segment (AIS) is known to play an important role in neuronal polarity formation, action potential initiation (Rasband, 2010; Szu-Yu Ho and Rasband, 2011), and brain diseases and injury (Buffington and Rasband, 2011). Ankyrin G (AnkG) has been demonstrated to play an important role in maintaining the structure of AIS and in the generation/maintenance of neuronal polarity (Hedstrom et al., 2008; Kapfhamer et al., 1995; Kordeli et al., 1995; Sobotzik et al., 2009). AnkG was found to link membrane proteins to the cytoskeleton and play critical roles in the stabilization of membrane domains (Bennett and Chen, 2001) and neuronal polarity (Sobotzik et al., 2009). Neuronal injury could result in the loss of AnkG (Schafer et al., 2009). At the AIS, the critical function of AnkG has been reported to mediate sodium channel localization (Pan et al., 2006) and the establishment of selective filtering machinery (Song et al., 2009).

In the present study, we report that in APP/PS1, PS1ΔE9, and PS1-M146V mouse hippocampal neurons, miR-342-5p, a miRNA that targets AnkG mRNA 3’ UTR, is highly upregulated compared with wild-type (WT) mouse neurons. Furthermore, we show that downregulation of AnkG by miR-342-5p is mediated through translation repression. Our results point to miRNA regulation as a critical determinant of axonal and neuronal pathology in AD mouse models.

RESULTS

Upregulation of miR-342-5p in the Hippocampus of AD Transgenic Mice

Microarray analysis of miRNAs was performed on pooled hippocampal tissues from WT (n = 16) and APP/PS1 mice (n = 16) at embryonic day 14 (E14). Our data showed that, with the criterion of a 2-fold cutoff, seven miRNAs were upregulated (Figure 1A, red dots) and seven miRNAs were downregulated (green dots) in APP/PS1 hippocampal tissues as compared with WT hippocampal tissues. Among these altered miRNAs, miR-342-5p...
was prominently increased and showed an ∼22-fold upregulation in APP/PS1 hippocampus (Figure 1A). This upregulation was further verified by RT-PCR measurements of the miR-342-5p level in hippocampal tissues from WT and APP/PS1 mice at 0, 2, and 4 months of age (Figure 1B). Previous studies have shown that miRNAs can be secreted into the cerebrospinal fluid (CSF) and plasma (Chan and Kocerha, 2012). In this regard, we observed that miR-342-5p levels were elevated in the CSF and plasma of APP/PS1 samples compared with WT samples collected at 0, 2, and 4 months of age (Figure 1B).

Since APP/PS1 mice harbor transgenes encoding the familial AD (FAD)-linked APPswe and PS1ΔE9 polypeptides, we sought to examine changes in miR-342-5p in transgenic mice expressing the genes individually (APPswe, human WT PS1 [hWTPS1], or PS1ΔE9), together with an independent transgenic line expressing the FAD-linked PS1-M146V variant. Interestingly, we found that miR-342-5p was selectively upregulated in all PS1 mutant lines compared with the hWTPS1 and APPswe mutant lines (Figure 1C). The increase in the miR-342-5p level was confirmed in the CSF and plasma in the single-gene transgenic mouse neurons, indicating that in PS1 a mutation contributed to the APP/PS1 phenotype upon miR-342-5p alteration. Right panel: miR-342-5p levels were significantly higher in the CSF and plasma of newborn APP/PS1, PS1ΔE9, and PS1-M146V mice, but not in APPswe or hPS1 mice. Data represent mean ± SE (n = 10 for each group). **p < 0.01 compared with controls.

AnkG mRNA 3’ UTR Was a Target of miR-342-5p

Complementary sequences for miR-342-5p are present in the 3’ UTR of AnkG mRNA in both mouse and human (Figure S1A). In SH-SY5Y cells, luciferase reporter assays were performed with the expression of firefly regulated by the AnkG mRNA 3’ UTR complementary region to miR-342-5p, and renilla as an internal control for transfection efficiency. We found that miR-342-5p induced a dose-dependent inhibition of luciferase activity, whereas mutant miR-342-5p and scramble control (Scr) miRNA had no effect (Figure 2A). The mimic of miR-342-5p markedly inhibited the luciferase activity, whereas the inhibitor of miR-342-5p increased the luciferase activity (Figure 2A). A time-course study showed that miR-342-5p inhibited luciferase activity from 6 to 48 hr after treatment (Figure 2B). In SH-SY5Y cells, an enhanced GFP (EGFP) reporter assay confirmed that miR-342-5p had a similar inhibitory effect on AnkG mRNA 3’ UTR (Figures S1C and S1D).

We then mutated the AnkG mRNA 3’ UTR complementary sequence and performed luciferase assays with either Scr miRNA or miR-342-5p. Our results indicated that miR-342-5p suppressed the luciferase activity with WT AnkG mRNA 3’ UTR, but not with mutant 3’ UTR (Figures 2C and S1E), suggesting the specificity of the interaction between miR-342-5p and AnkG mRNA 3’ UTR. To further validate that the AnkG mRNA 3’ UTR was one of the targets for miR-342-5p, we made mutant AnkG mRNA 3’ UTR with two repeats of the putative complementary binding domain (BD) sequence (2BD) and three repeats of the BD sequence (3BD). The luciferase reporter system showed that miR-342-5p did not suppress the luciferase activity regulated by unrelated MAP2 mRNA 3’ UTR (Figure 2C). With AnkG mRNA 3’ UTR, luciferase activity was greatly reduced in a BD-dose-dependent manner (Figure 2C). To examine the specificity of miR-342-5p targeting AnkG mRNA, we tested all seven miRNAs upregulated in APP/PS1 tissues, as detected by microarray assay (Figure 1A),
against luciferase reporter activity regulated by AnkG mRNA 3' UTR. Only miR-342-5p effectively inhibited luciferase activity (Figure 2D).

When different concentrations of miR-342-5p were transfected into SH-SY5Y cells, measurements of AnkG mRNA levels in various concentrations of miR-342-5p, the mimic of miR-342-5p (M-miR-342-5p), and the inhibitor of miR-342-5p (I-miR-342-5p) showed no difference (Figure S1 B), suggesting that miR-342-5p likely modulates AnkG levels through translation repression rather than mRNA degradation. Western blotting of AnkG with the mimic of miR-342-5p, inhibitor of miR-342-5p, and mutant miR-342-5p indicated that miR-342-5p indeed decreased AnkG levels (Figure 2E). Direct binding of miR-342-5p and AnkG mRNA 3' UTR was demonstrated by RNase protection assay. A synthesized miR-342-5p sequence (lane 4) and its antisense reversed sequence (lane 3) were labeled with 32P probe and mixed with AnkG mRNA 3' UTR. After RNase digestion, single-stranded RNAs were degraded, whereas bonded, double-stranded RNAs remained. Compared with the positive control (lane 2), where the exact complementary sequence to miR-342-5p was used, miR-342-5p (lane 4) showed a clear band (*), suggesting its direct binding to AnkG mRNA 3' UTR (Figure 2F).

Downregulation of AnkG in AD Transgenic Mice

Using immunostaining of AnkG, we found that AnkG was expressed in the axon and highly localized to the AIS in 7 days in vitro (DIV) WT mouse neurons, whereas the AnkG level was much lower in APP/PS1 mouse neurons, although localized AnkG distribution in the AIS remained detectable (Figure 3 A). Western blot data from single-gene transgenic lines indicated that in PS1 mutated lines, AnkG levels were markedly reduced (Figure 3 B), whereas mRNA levels of AnkG remained unchanged in various lines (Figure 3 F). Western blots further showed that APP/PS1 mouse neurons had up to a 60% reduction of the total AnkG level in APP/PS1 mouse neurons at 2, 3, and 5 DIV as compared with WT neurons (Figures 3 C and 3D). This reduction was found by using AnkG antibodies from two different sources (Figure S2 A). In adult mice at age of 2, 6, and 8 months, APP/PS1 mouse hippocampal tissues had lower levels of AnkG compared with WT tissues (Figures 3 C and 3E).

The levels of AnkG mRNA were examined in WT and APP/PS1 mice hippocampal tissues at different ages (Figure S2 B). Interestingly, although the protein levels of AnkG in APP/PS1 mice were lower than in WT mice, the mRNA levels did not show significant differences between WT and APP/PS1 mice (Figure S2 B), suggesting that the downregulation of AnkG in APP/PS1 mice...
was due to either accelerated degradation or reduced protein expression at the translation level.

DISCUSSION

In the present study, we find that miR-342-5p is upregulated in AD transgenic mice, including APP/PS1, PS1ΔE9, and PS1-M146V lines. Furthermore, miR-342-5p binds directly to the 3' UTR of AnkG mRNA and decreases AnkG levels through translation repression in AD transgenic mouse neurons. miRNA profiling has been studied in the brain, blood, and CSF of Parkinson's disease patients (Cogswell et al., 2008; Hebert et al., 2008; Lukiw, 2007, Lukiw et al., 2008; Nelson and Wang, 2010; Nunez-Iglesias et al., 2010; Schipper et al., 2007; Shioya et al., 2010; Wang et al., 2008) and mouse models (Krichevsky et al., 2003; Li et al., 2011; Wang et al., 2009; Yao et al., 2010). Using APPswe/PS1ΔE9 mouse cortical tissues at 3 and 6 months of age, Wang et al. (2009) reported 37 differentially expressed miRNAs, which did not include miR-342-5p (Wang et al., 2009). The tissue specificity may account for this discrepancy, since we used hippocampal tissues in this study.

Our data show that PS1 mutation resulted in the most significant miR-342-5p upregulation. miR-342-5p is produced by “dicing” its parental miRNA, miR-342 (Westholm and Lai, 2011). To investigate how PS1 mutants increase miR-342-5p levels, we first examined the parent miR-342 levels in the hippocampal tissues from different mouse lines. Our data indicated that PS1 mutant lines express elevated miR-342 levels (Figure 4A), suggesting that PS1 mutants might regulate miR-342 at the transcriptional level. In vitro studies have revealed that expression of either PS1ΔE9 or PS1-M146V variants can increase β-catenin levels (Soriano et al., 2001), and indeed, we also observed a similar upregulation of β-catenin in embryonic hippocampal tissues from APP/PS1, PS1ΔE9, and PS1-M146V mice (Figure 4B). A transcriptional target of β-catenin is c-Myc (Smalley and Dale, 1999), and we now show that elevated β-catenin expression leads to increased c-Myc levels, which in turn elevate the levels of interferon regulatory factor 9 (IRF-9), as expected (Figure 4B; Seitz et al., 2011). miR-342 is localized in the intron Enah/Vasp-like (EVL) gene (Grady et al., 2008), and it is known that one of the critical transcription factors that activate the EVL promoter is IRF-9 (De Marchis et al., 2009). Hence, we would suggest that elevated IRF-9 leads to an increase in miR-342 levels. Taken together, our studies indicate that PS1ΔE9 and PS1-M146V mutants increased miR-342-5p levels through upregulation of β-catenin, c-Myc, and IRF-9. As the parent miRNA to miR-342-5p, miR-342 is diced into miR-342-5p and miR-342-3p (Westholm and Lai, 2011). Given that miR-342 and miR-342-5p are increased, it is not known why an increase in another strand, miR-342-3p, is not observed. Probably miR-342-3p does not successfully bind to the targets as miR-342-5p does, and then is degraded rapidly.

AnkG has been associated with AIS filtering and protein trafficking (Song et al., 2009). In APP/PS1 mice, axonopathy has been described as age-dependent axonal spheroids and myelin ovoids in the spinal cord (Wirths et al., 2006). In PS1 mutant mice (PS1ΔE9 and PS1-M146V), impaired fast axonal transport has been demonstrated (Lazarov et al., 2007). It is possible that in

Figure 3. AnkG Was Downregulated in APP/PS1, PS1ΔE9, and PS1-M146V Mouse Neurons

(A) Left panel: at 7 DIV, AnkG distributed in the axon in WT mouse neurons, but only slightly in the axon in APP/PS1 mouse neurons. Scale bars, 50 μm (upper panels) and 10 μm (lower panels). Dashed line, AIS. Right panel: quantification of relative AnkG intensity in WT and APP/PS1 neurons. (B) AnkG decreased in PS1ΔE9, PS1-M146V, and APP/PS1 neurons, but not in APPswe or hPS1 neurons. Lane 1: WT; lane 2: APPswe; lane 3: hPS1; lane 4: PS1ΔE9; lane 5: PS1-M146V; lane 6: APP/PS1. (C–E) Western blots (with Invitrogen antibody) show that in neuronal culture at 2, 3, and 5 DIV of E14 embryos and in hippocampal tissues at 0, 2, 6, and 8 months of age, APP/PS1 mouse neurons and tissues had a smaller amount of AnkG as compared with WT. (F) The mRNA levels in APPswe, hPS1, PS1ΔE9, PS1-M146V, and APP/PS1 neurons were not significantly different. Data represent mean ± SE (n = 10 for each group). **p < 0.01 compared with WT.
APP/PS1 and PS1 mutant mice, due to downregulation of AnkG by miR-342-5p, the AIS filtering is impaired, resulting in abnormal trafficking of proteins. The defective protein trafficking may induce protein aggregation in the axon, leading to impaired axonal fast transport. This may contribute to the axonopathy observed in AD and other neurodegenerative diseases. Finally, AD has been considered to be an aging-related disorder. Our data show that developmental defects in miRNA regulation, AIS filtering, and protein trafficking and localization could be involved in AD pathogenesis.

EXPERIMENTAL PROCEDURES

Cell Culture, Microinjection, and Treatments

Primary neurons were cultured from E14 APP/PS1 (APPsw/PSE1E9), APPsw, WT human PS1 knockin (hPS1), PSE1E9, and PS1-M146V mice hippocampus, following the regulations of the Peking University Animal Care and Use Committee as previously described (Cui et al., 2011). SH-SY5Y cells were cultured with minimum essential medium (Invitrogen).

miRNA levels were measured by the CapitalBio (Beijing, China) microarray service using GeneChip miRNA 2.0 (Affymetrix). miR-342-5p in the serum and CSF was measured with the TaqMan MicroRNA assay kit (Life Technologies) for Mmu-miR-342-5p according to the manufacturer’s instructions. All miRNAs were transfected into SH-SY5Y cells with HiPerFect Transfection reagents (QIAGEN).

RNome Protection Assay

To make the probe, we replaced the 5' end of phosphatase group of human miR-342-5p and its reversed control strands with 32P (neg502a001MC; PerkinElmer) by T4 Polynucleotide Kinase (M0201S; PerkinElmer). The complementary sequence and human AnkG 3' UTR mRNA (5'-TGTATAAGGACAC TGCTCTTAGAACA-3') were synthesized and purchased from QIAGEN. The 32P-labeled miR-342-5p, its reversed control or complementary sequence, and AnkG mRNA 3' UTR were added in the hybridization buffer at 80°C for 2 min, and then incubated at 45°C for 18 hr. RNase A (D202; Takara) was added into the sample at 37°C for 30 min. The RNAs were purified and run into 15% PAGE. The gel was dried and revealed by autoradiography.

Immunostaining

Cells were permeabilized in PBS-Triton at 4°C, blocked in 10% donkey serum at room temperature, and then incubated with AnkG antibody (4G3F8, Invitrogen, 1:200) or MAP2 (Abcam) at 4°C for 24 hr. Cy2- or Cy3-conjugated donkey anti-rabbit antibodies and AMCA-conjugated goat anti-chicken antibodies were applied as the secondary antibodies. The nuclei were stained with Hoechst 33258 (1 μg/ml; Sigma) for 15 min in the dark. The coverslips were mounted with Immunomounting medium (Shandon) onto glass slides and the results were analyzed with the use of laser confocal fluorescence microscope (Leica TCS SP5). A Super Resolution N-SIM Microscope (Nikon) was used to analyze high-resolution data. The average fluorescence intensities were measured at various distances from the soma area using NIS-Elements AR software (Nikon). To quantify the data, 15 frames were averaged with subtraction of background fluorescence intensity.

ACCESSION NUMBERS

The microarray data reported in this paper has been deposited in the NCBI Gene Expression Omnibus under accession number GSE53859.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and two figures and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2013.12.028.

AUTHOR CONTRIBUTIONS

X.S., Y.W., and M.G. performed all of the experiments and analyzed the data. Y.Z. conceptualized the study, performed analyses, and drafted the manuscript.

ACKNOWLEDGMENTS

The authors thank Dr. Sangram Sisodia (University of Chicago) and Dr. Vann Bennett (Duke University) for their inspiring thoughts and helpful suggestions regarding the project and the manuscript. Dr. Sisodia also provided all of the PS1 mutant mouse lines and Dr. Bennett provided the AnkG antibody. This work was supported by the National Science Foundation of China (NSFC; Major Research Grant 91132718).

References

