Early life experience drives structural variation of neural genomes in mice

Authors
Tracy A. Bedrosian, Carolina Quayle, Nicole Novaresi, Fred. H. Gage
03-28-2018 HSW 1057
12:00pm
PST
Categories
RNA & Disease
Speaker
John Gagnon
Abstract

The brain is a genomic mosaic owing to somatic mutations that arise throughout development. Mobile genetic elements, including retrotransposons, are one source of somatic mosaicism in the brain. Retrotransposition may represent a form of plasticity in response to experience. Here, we use droplet digital polymerase chain reaction to show that natural variations in maternal care mediate the mobilization of long interspersed nuclear element–1 (LINE-1 or L1) retrotransposons in the hippocampus of the mouse brain. Increasing the amount of maternal care blocks the accumulation of L1. Maternal care also alters DNA methylation at YY1 binding sites implicated in L1 activation and affects expression of the de novo methyltransferase DNMT3a. Our observations indicate that early life experience drives somatic variation in the genome via L1 retrotransposons.