Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity

Authors
Janet Karpinski1,2,11, Ilona Hauber2,11, Jan Chemnitz2,11, Carola Schäfer2,3, Maciej Paszkowski-Rogacz1, Deboyoti Chakraborty1, Niklas Beschorner2, Helga Hofmann-Sieber2,3, Ulrike C Lange2–4, Adam Grundhoff2,3, Karl Hackmann5, Evelin Schrock5, Josephine Abi-Ghanem6, M Teresa Pisabarro6, Vineeth Surendranath7,
Axel Schambach8, Christoph Lindner9, Jan van Lunzen2,3,10, Joachim Hauber2,3 & Frank Buchholz1,7
03-02-2016
12:00pm
PST
Categories
Targeting RNA for Therapy & Diagnostics
Abstract
Current combination antiretroviral therapies (cART) efficiently suppress HIV-1 reproduction in humans, but the virus persists as integrated proviral reservoirs in small numbers of cells. To generate an antiviral agent capable of eradicating the provirus from infected cells, we employed 145 cycles of substrate-linked directed evolution to evolve a recombinase (Brec1) that sitespecifically recognizes a 34-bp sequence present in the long terminal repeats (LTRs) of the majority of the clinically relevant HIV-1 strains and subtypes. Brec1 efficiently, precisely and safely removes the integrated provirus from infected cells and is efficacious on clinical HIV-1 isolates in vitro and in vivo, including in mice humanized with patient-derived cells. Our data suggest that Brec1 has potential for clinical application as a curative HIV-1 therapy