A Cas9 with Complete PAM Recognition for Adenine Dinucleotides
Abstract
CRISPR-associated (Cas) DNA-endonucleases are remarkably effective tools for genome engineering, but have limited target ranges due to their protospacer adjacent motif (PAM) requirements. We demonstrate a critical expansion of the targetable sequence space for a Type-IIA CRISPR-associated enzyme through identification of the natural 5’-NAA-3’ PAM specificity of a Streptococcus macacae Cas9 (Smac Cas9). We further recombine protein domains between Smac Cas9 and its well-established ortholog from Streptococcus pyogenes (Spy Cas9), as well as an “increased" nucleolytic variant (iSpy Cas9), to achieve consistent mediation of gene modification and base editing. In a comparison to previously reported Cas9 and Cas12a enzymes, we show that our hybrids recognize all adenine dinucleotide PAM sequences and possess robust editing efficiency in human cells.