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BIOINFORMATICS

A range of complex probabilistic models for RNA

secondary structure prediction that includes
the nearest-neighbor model and more

ELENA RIVAS,1,3 RAYMOND LANG,2 and SEAN R. EDDY1

1Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
2Xavier University of Louisiana, New Orleans, Louisiana 70125, USA

ABSTRACT

The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model
with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches
with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative
statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has
been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity,
although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing
complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO,
a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor
model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores.
By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better
than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that
evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published
method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction
is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

Keywords: RNA secondary structure prediction; probabilistic models; language for RNA grammar parsing; stochastic context-
free grammars; maximum likelihood training

INTRODUCTION

Single-sequence RNA secondary structure prediction is im-
portant both in its own right (Inoue and Cech 1985; Nahvi
et al. 2002; Fujita et al. 2011) and as a component of methods
for RNA alignment (Knudsen and Hein 1999; Mathews and
Turner 2002; Dowell and Eddy 2006; Bernhart et al. 2008),
homology search (Eddy and Durbin 1994; Sakakibara et al.
1994; Nawrocki 2009), and motif finding (Rivas and Eddy
2001; Washietl et al. 2005). Traditionally, RNA secondary
structure prediction is performed by energy minimization
using the nearest-neighbor model with free-energy param-
eters fitted to biophysics results from small RNA oligonu-
cleotides. The nearest-neighbor model of RNA structure
assumes that the stability of a base pair depends on its ad-

jacent bases, which could be either base-paired (a stacking
contribution) or unpaired (a mismatch contribution) (Xia
et al. 1998). Thermodynamic implementations of the nearest-
neighbor model include Mfold (more recently UNAFold)
(Zuker and Stiegler 1981; Zuker 2003; Markham and Zuker
2008), ViennaRNA (Hofacker et al. 1994; Hofacker 2003),
and RNAstructure (Mathews et al. 1998; Reuter and Mathews
2010). These models show ample room for improvement
(Mathews et al. 1999; Doshi et al. 2004).

Besides thermodynamic parameters, a wealth of other
information is available about RNA secondary structure,
including a growing number of NMR and crystal structures
(Quigley and Rich 1975; Pley et al. 1994; Cate et al. 1996;
Ferré-D’Amaré et al. 1998; Ban et al. 2000; Batey et al. 2000,
2004; Wimberly et al. 2000; Kazantsev et al. 2005; Montange
and Batey 2008; Yang et al. 2010), databases of RNA
sequence families and structures inferred from compara-
tive sequence analysis (Cannone et al. 2002; Gardner et al.
2011), and experimental methods for probing secondary
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structure accessibility that can now be applied genome-
wide (Kertesz et al. 2010; Underwood et al. 2010). These
information sources are statistical, not thermodynamic.
This motivates interest in methods that combine statistics
and thermodynamic methods (Juan and Wilson 1999;
Andronescu et al. 2007) and in methods that are purely
statistical (Dowell and Eddy 2004; Do et al. 2006).

Existing statistical methods for RNA secondary structure
prediction that train their parameters totally (or partially)
from trusted RNA structures include CONTRAfold (Do
et al. 2006, 2007), Simfold (Andronescu et al. 2010), and
ContextFold (Zakov et al. 2011). These statistical methods,
which implement different variants of the nearest-neighbor
model, seem to outperform thermodynamic methods
(Hamada et al. 2009).

We distinguish two kinds of statistical approach. A
discriminative method has a model parameterized with
arbitrary values and is usually trained by optimizing the
sum of conditional probabilities of structures given se-
quences in the training set. (The conditional probabilities
are obtained by normalizing the structure’s Boltzmann
factor over all possible structures for the sequence.) A
generative method has a model parameterized with prob-
ability values. A standard way of implementing probabilis-
tic (generative) models for RNA is by using stochastic
context-free grammars (SCFGs) (Durbin et al. 1998). Gen-
erative models are trained by optimizing the joint proba-
bility of sequences and their structures, which is a much
simpler method than discriminative training. Generative
models could also be trained by discriminative training.
The relative performance of generative versus discrimina-
tive training has been studied extensively. The verdict is
mixed, and it seems to be dependent on the problem, the
model, and the amount of training data (Johnson 2001; Ng
and Jordan 2002; Liang and Jordan 2008).

To date, the best RNA folding methods are discrimina-
tive. However, limited work has been reported on using
generative methods that implement some of the complexity
of the nearest-neighbor model (Rivas and Eddy 2000).
Applications of SCFGs to RNA structure prediction to date
have used much simpler models (Eddy and Durbin 1994;
Sakakibara et al. 1994; Knudsen and Hein 1999; Rivas and
Eddy 2001). This literature may have led some to conclude
that SCFGs cannot be applied to more complex models.
For instance, Do et al. (2006) mention ‘‘the difficulty of
building SCFGs on par with energy-based models.’’ How-
ever, there is no technical reason why probabilistic models
cannot implement complex features (Nebel and Scheid
2010; Weinberg and Nebel 2010).

The aim of this article is to explore the space of prob-
abilistic models, including parameterizations as complex as
the nearest-neighbor model, and to enable the exploration
of even more complex models. In order to explore com-
plex SCFGs quickly and consistently, we have created
TORNADO, a program that can parse many different

grammars under one unified set of algorithms for folding
sequences and training parameters. This is an important
tool to have because while thermodynamic models are
limited by experimentally determined parameters (Xia et al.
1998; Liu et al. 2011), the parameterization of an SCFG (or
any other statistical method for that matter) depends only
on the existence of enough trusted structures.

Using TORNADO, we explore many different RNA
probabilistic models that incorporate all the features of
the nearest-neighbor model and many more. We present
TORNADO grammar emulations of standard methods that
use thermodynamic (ViennaRNA) or arbitrary parameters
(CONTRAfold). These emulations use all the parameters of
the original models and perform almost identically to the
native versions. TORNADO enables the alternative param-
eterization of these same grammars by probabilistic train-
ing, which provides a direct comparison between thermo-
dynamic (or non-energy-based scores) and probabilistic
parameterizations. Our main findings are that complex
SCFGs on par with thermodynamic models can be made
but that currently existing data sets of RNA structures do
not support the satisfactory training or benchmarking of
these complex (generative or discriminative) models.

RESULTS

A generalized RNA folding ‘‘super-grammar’’
specified by a programming language

TORNADO provides a formal language to express context-
free grammars specialized for single-sequence RNA sec-
ondary structure. TORNADO builds on previous efforts to
develop languages that express entire classes of models. For
instance, the Church language is for general purpose sto-
chastic generative models (Goodman et al. 2008). Algebraic
Dynamic Programming (ADP) is specific for dynamic
programming techniques in bioinformatics (Giegerich
et al. 2004; Giegerich and Steffen 2006; Steffen 2006). The
TORNADO language is designed to provide compact gram-
mar descriptions for a wide range of RNA structural features
such as nearest-neighbor dependencies (e.g., stacking rules
or mismatches), including higher than first-order depen-
dencies, and parameterization of arbitrary loop length
distributions.

SCFGs consist of nonterminals, terminals (the actual
residue emissions), and production rules that recursively
determine which strings of terminals the grammar permits
(Hopcroft and Ullman 1979). In TORNADO, nonterminals
are specified with capital letters, and terminals with
lowercase single letters (one letter per emission even if
the emission consists of more than one residue). For
example, one SCFG that has been used extensively is Pfold
(Knudsen and Hein 1999; Pedersen et al. 2006; called g6s by
Dowell and Eddy [2004] with stacking added). TORNADO
code to produce g6s is
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This is a verbatim copy of supplemental file ‘‘g6s.grm.’’
This grammar has three nonterminals (S, L, F). Each non-
terminal has two rules, for a total of six rules. Rules for the
same nonterminal can be put together with a | (the ‘‘or’’
symbol), as depicted here, or in separate lines as desired.
There are three emitting rules in this grammar, each emitting
a different residue type: one single residue emission (a:i), one
plain base-pair emission (a:i&j), and one stacked pair
emission dependent on the two adjacent outside bases (a:i&
j:i�1,j+1). TORNADO’s notation assumes that ‘‘i’’ always
refers to the 59 left-most residue and that ‘‘j’’ refers to the 39

right-most residue. Emitted residues are separated from
context residues with a colon, and a base pair is characterized
by a ‘‘&’’ to distinguish it from two unpaired bases (e.g.,
a mismatch emission a:i,j:i�1,j+1). In a non-SCFG, each rule
may be associated with an arbitrary score that might depend
on the terminals in the rule. For an SCFG, each rule has
associated a ‘‘transition’’ probability so that the sum of the
transition probabilities for a given nonterminal is one. For
each rule, each terminal corresponds to an ‘‘emission’’ (of
one or several residues) and has associated a probability
distribution. In this example, the existence of transition and
emission distributions is specified implicitly by the rules.

Figure 1 shows a more complex grammar coded in
TORNADO language. Here is a compact description of those
and other more complex features allowed by TORNADO.

Four possible iterators

In addition to the left-most 59 (i) and right-most 39 (j)
iterators, TORNADO allows up to two intermediate iter-
ators represented by ‘‘k ’’ or ‘‘l,’’ such that i # k # l # j.
The i,j (k,l) notation establishes a connection with the actual
dynamic programming routines that TORNADO will im-
plement for the grammar. These iterators are not necessary
for the formal grammar itself, but they simplify the parser
without adding much additional complexity. Some simple
rules admit simple forms without explicit iterators (like
S / L or S / LS in the g6s example above), but the use of
explicit iterators allows us to describe an arbitrarily large
number of complex rules. For instance, a 1 nucleotide (nt)
left bulge (a) emitted with the closing base pair (b, b̂) and
depending on the previously emitted base pair (c, ĉ) that has
the formal grammar notation Pc;ĉ / ab F b̂, in TORNADO
adopts the form [Pc;ĉ / a:i,i+1&j:i�1,j+1 F(i+2,j�1)].

Production rules

Production rules can include an arbitrary number of
residue emissions, loop emissions, and nonterminals pro-

vided that the rule requires no more than four iterators.
Examples of possible maximal combinations allowed in
TORNADO’s rules are as follows: three nonterminals and
an arbitrary number of emissions; two nonterminals, one
monosegment loop, and an arbitrary number of emissions;
and one nonterminal, one disegment loop, and an arbitrary
number of emissions.

Arbitrary residue emissions

Emissions can include an arbitrary number of residues and
can depend on an arbitrary number of previously emitted
residues (contexts). This generalizes the emissions used in
the nearest-neighbor model. Typical examples of nearest-
neighbor emissions are as follows:

Stacked base pairs [Pc;ĉ / a F â]: in which a base pair (a, â)
depends on a contiguous base pair (c, ĉ) (for arbitrary
nonterminals F and Pc;ĉ). In TORNADO language,
a:i&j:i�1,j+1 F(i+1,j�1).

Hairpin mismatches [Pc;ĉ / a [m. . .m] b]: in which the
final two bases of a hairpin loop (a,b) depend on the
closing base pair (c, ĉ). In TORNADO language,
a:i,j:i�1,j+1 m. . .m(i+1,j�1).

Tetraloops depending on closing base pair [Pc;ĉ /
a1a2a3a4]: Hairpin loops with exactly four bases depend-
ing on the closing base pair (c, ĉ). In TORNADO lan-
guage, a:i,i+1,i+2,i+3:i�1,j+1.

Internal loop mismatches [Pc;ĉ / a [d. . .]b F b̂[. . .d]e]:
where for an internal loop limited by the two base pairs
(c, ĉ) and (b, b̂), the closing bases (a, e) depend on the
adjacent base pair (c, ĉ), and the base pair (b, b̂) depends
on the adjacent bases in the internal loop. In TORNADO
language, a:i,j:i�1,j+1 d. . .(i+1,k). . .d(l,j�1) F(k+2,l�2)
b:k+1&l�1:k,l.

Left and right dangles [Pc;ĉ / a F | F a]: in which a single
left (or right) base depends on the adjacent base pair. In
TORNADO language, a:i:i�1,j+1 F(i+1,j) or b:j:i�1,j+1
F(i,j�1).

Base pairs depending on left and right dangles [Pc / a F
â] [Pc,d / a F â]: in which a base pair (a, â) depends on
the contiguous unpaired bases (c), (d), or both. In
TORNADO language, a:i&j:i�1 F(i+1,j�1) or a:i&j:j+1
F(i+1,j�1) or a:i&j:i�1,j+1 F(i+1,j�1).

Other first-order emissions tested with TORNADO and not
included in the standard nearest-neighbor model are as follows:

dangles in bulges [Pc;ĉ / a [m. . .m]b F b̂]: in which the
end base (a) of a bulge depends on the adjacent base pair

# g6s ½Pfold grammar with stacking�
S��> Lði; kÞ Sðk + 1; jÞ j L # Start nonterminal has two rules

L��> a : i & j Fði + 1; j� 1Þ j a : i # helix starts j one single emission

F��> a : i & j : i� 1; j + 1 Fði + 1; j� 1Þ j L S # helix continues j helix ends
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(c, ĉ), and the closing base pair (b, b̂) depends on the
adjacent bulge base. In TORNADO language, a:i:i�1,j+1
m. . .m(i+1,k) b:k+1&j:k F(k+2,j�1).

mismatches (or dangles) in multiloops where multiloop
bases contiguous to base pairs depend on the closing
base pairs. Details of multiloop dangles are given in the
Materials and Methods.

coaxial stacking [P / a F â b F b̂]: where two contigu-
ous stems with closing base pairs (a, â) and (b, b̂),
respectively, have their final base-pair emissions depend-
ing on each other. In TORNADO language, a:i&k

b:j&k+1:i,k F(i+1,k�1) F(k+2,j�1) or a:i&k,j&k+1
F(i+1,k�1) F(k+2,j�1).

TORNADO can also be used to build second (or higher)-
order Markov dependencies, rather than just first order.
Examples are

dangles (or more than one single base) depending on
several bases [Pc,d,e / a F | a b F]: In TORNADO
language, a:i:i�1,i�2,i�3 F(i+1,j) and a:i,i+1:i�1,i�2,
i�3 F(i+2,j).

FIGURE 1. TORNADO code for an unambiguous grammar that incorporates loops and stacking. This is an example intended to show how the
TORNADO super-grammar works to describe several of the elements of the nearest-neighbor model while still fitting in one page. This
‘‘basic_grammar’’ is at the core of both ViennaRNA or CONTRAfold before terminal mismatches and dangles are added. There are eight
nonterminals and 19 rules. Eleven rules include emission terminals. Seven of these emission terminals use a total of 35 predefined residue
emission distributions. Residue emission distributions with different attributes (e.g., number of residues, context, base pairs) can have the same
name. The tag ‘‘_WW_’’ indicates base pairs between Watson-Crick edges in cis for all 4 3 4 residue combinations. There are four loop
emitting terminals for hairpins, left and right bulges, and internal loops, which use three length distribution (‘‘l1,’’ ‘‘l2,’’ and ‘‘l3,’’ respectively).
The ‘‘l3’’ length distribution defines two independent segments. The length distributions have a maximum number of emissions determined by
‘‘p-MAX_LENGTH,’’ and a maximum number of residues controlled by ‘‘p-FIT_LENGTH’’ after which emissions are fitted to a simple model.
In this example, there is a prespecified transition distribution ‘‘t-P,’’ which allows us to tie transitions for the left and right bulge loops. The
total number of free tied parameters for this grammar is 1022. This figure is a verbatim copy of supplemental file ‘‘basic_grammar.grm.’’
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higher-order stacked pairs [Pb;b̂;c;ĉ / a F â]: In
TORNADO language, a:i&j:i�1,i�2,j+1,j+2 F(i+1,j�1).

three single bases depending on two base pairs [Pe;ê;f ;f̂ /
a b c F]: In TORNADO language, a:i,i+1,i+2:i�1,i�2,
j+1,j+2 F(i+3,j).

Length distributions for loop emission

Monosegment loops (for instance for hairpins, bulges,
multiloops or external bases), and disegment loops (for
internal loops) can be specified. Disegment loops might
include two independent length distributions or a joint one
parameterized by the total length of the loop.

Length distribution tails for loop emissions

A length distribution can include a table of specific in-
dependent values for lengths up to a value (p-FIT_
LENGTH in Fig. 1), and a tail (dependent on a small
number of parameters) for lengths larger than p-FIT_
LENGTH. Length distribution tails can be specified in
TORNADO in the form of affine (for scores) or geometric
(for probabilities) extrapolations.

Length distributions for stems

Base pairs can be emitted as stems of arbitrary lengths
governed by a length distribution. Stem length distribution
can be combined with stacking emission of the actual base
pairs. This feature is a natural addition to the standard
nearest-neighbor model.

Tying of parameters

Transitions can be tied internally (so that two rules for the
same nonterminal share the same value) or externally (so
that two different nonterminals can have the exact same
transitions). Emission distributions can also be tied so that,
for instance, a single residue emission (a:i) could be a
marginalization of a mismatch emission (a:i,j), or a mis-
match (a:i,j:i�1,j+1) could be the product of two inde-
pendent dangles (a:i:i�1,j+1) and (b:j:i�1,j+1). A larger list
of tying operations for residue emissions has been imple-
mented (see TORNADO’s documentation).

Specific distributions

For the purpose of tying parameters, transition, emission,
and length distributions can be prespecified as part of the
grammar description previous to providing the actual
grammar rules.

Specific values

Specific values can be assigned to the different distributions
as part of the description of the grammar. These values
could be free-energy changes obtained from thermody-
namic data or arbitrary scores provided by other means.
Setting values is helped by the possibility of defining

constants that can be interpreted numerically anywhere in
the grammar description (and can be defined by mathe-
matical operations), much like the macro definition di-
rective (#define) works in C programming.

Arbitrary 4 3 4 canonical base pairs and noncanonical
base pairs

TORNADO allows distinguishing 18 types of base pairs,
depending on the edge (Watson-Crick, Sugar, or Hoogsteen)
and the conformation (cis or trans) of the two bases (Leontis
and Westhof 2001). In this work, we only used the canon-
ical base-pairing type (Watson-Crick/Watson-Crick in cis)
which could involve any of the 4 3 4 possible residue
combinations (or be restricted by design to only G-C, A-U,
and G-U base pairs).

Comments

Comments can be specified at any time using ‘‘#’’ or ‘‘//.’’
More details are given in the Materials and Methods and

in the TORNADO documentation provided as part of the
Supplemental Material.

This shows that SCFGs of the standard nearest-neighbor
model and beyond are possible and are efficiently repre-
sented in the TORNADO language.

Inference algorithms implemented in TORNADO

The training of generative methods is usually done by
optimizing the likelihood of the joint distribution of
sequences and structures in a training set. This optimiza-
tion problem has a closed form solution (given the parse
trees), in which the parameters are estimated as their
frequency of occurrence in the parsing of the pairs
(sequence/structure) through the model, so-called maxi-
mum likelihood (ML) training.

TORNADO’s ‘‘grm-train’’ implements the ML training
method given a collection of individual sequences annotated
with their secondary structures. In the presence of grammar
ambiguity (i.e., when more than one path through the model
would produce the same structure), the ML training method
is ill-defined (Giegerich 2000). TORNADO arbitrarily chooses
at random one of the alternative paths.

Discriminative methods only calculate the conditional
probabilities of structures given the sequences and do not
perform ML training. The optimization of the conditional
distribution of structures given the sequences (conditional ML
training [CML]) does not have a closed form and requires
costly optimization procedures. CONTRAfold and Simfold
were trained using CML. Other discriminative methods im-
prove training time efficiency by avoiding global optimization
over the entire training set (Zakov et al. 2011). CML training
methods have not been implemented in TORNADO.

Structure prediction has been traditionally performed by
reporting the structure with the minimum free-energy
change (or the highest probability) obtained using the
minimum free-energy algorithm or the Cocke-Younger-
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Kasami (CYK) algorithms, which are two flavors of the
same dynamic programming algorithm for thermodynamic
or statistical methods, respectively. An alternative method
(pioneered by Miyazawa for alignment algorithms [Miyazawa
1995] and later applied to hidden Markov models [Holmes
1998]) uses the posterior probabilities of any two positions
being base-paired (which are calculated with either the
McCaskill [McCaskill 1990] or the Inside/Outside algorithms
[Lari and Young 1990, 1991], two flavors of the same algo-
rithm for thermodynamic or statistical methods, respec-
tively). By using those posterior probabilities, one can cal-
culate the structure with the maximal expected accuracy
(MEA). Different MEA methods have been implemented for
RNA folding, either by maximizing the posterior probabil-
ities of base pairs (Knudsen and Hein 1999; Do et al. 2006)
or by calculating centroid estimators (Ding et al. 2005;
Hamada et al. 2009). MEA methods have consistently im-
proved performance both for thermodynamic and statistical
models. Currently, most RNA folding packages use a MEA
estimator to predict RNA structures (Lu et al. 2009).

TORNADO’s ‘‘grm-fold’’ implements the CYK algorithm,
the MEA method with a sensitivity-specificity trade-off
(C-MEA) (Do et al. 2006), the centroid algorithm (CEN)
(Ding et al. 2005), and the generalized centroid algorithm
(G-CEN) (Hamada et al. 2009). Because there is no opera-
tional difference between the folding algorithms used for
thermodynamic, statistical, or probabilistic models, TORNA-
DO’s folding programs can be used with grammars using any
of the three parameterizations.

Specifically for probabilistically trained grammars,
TORNADO includes the following: ‘‘grm-psample’’ to
sample suboptimal structures from the posterior distribution
of structures given a sequence, and ‘‘grm-emit’’ to generate
joint sequence/structure pairs from the grammar.

Because TORNADO is designed to be general and ca-
pable of accommodating a large number of different fea-
tures, it also lacks any optimization (Backofen et al. 2009).
TORNADO is not meant to be the code for a final product,
but rather an exploratory tool to search for better models of
RNA secondary structure. The time complexity of the
training and folding algorithms in TORNADO is O(K L3)
for a sequence of length L and a design-dependent constant
K, as is usual for these dynamic programming algorithms.
Most TORNADO programs include a Message Passing
Interface (MPI) implementation to run on clusters.

Benchmarking tools

Training and test sets

In order to train SCFGs with large numbers of parameters, we
need large training sets. To assure proper benchmarking, we
also need test sets that are not too similar to the training sets.

We collected the training sets of three previous studies of
discriminative methods that implement the nearest-neigh-
bor model (Do et al. 2006; Andronescu et al. 2007, 2010),

augmented by a collection of rRNA domains obtained from
Lu et al. (2009) as a substitute for the rRNA training set
used in a fourth study of lightweight SCFGs (Dowell and
Eddy 2004), which utilized full-length SSU and LSU
sequences, which are too long to be practical for complex
models in TORNADO.

To ensure sequence dissimilarity, we constructed a train-
ing set TrainSetA, which eliminates ‘‘nearly identical’’ se-
quences within a set, and ‘‘similar’’ sequences among the
four sets. (The operational definitions of the terms ‘‘nearly
identical’’ and ‘‘similar’’ are given in the Materials and
Methods.) The training set TrainSetA includes SSU and
LSU domains, SRP RNAs, RNase P RNAs, tmRNAs, as well
as other small (20- to 50-nt) secondary structures deduced
from tertiary structures in the Protein Data Bank. TrainSetA
contains 3166 sequences; 47.9% of the residues in TrainSetA
are base-paired, of which <0.1% are not A-U, C-G, or G-U
base pairs. For details, see Figure 2.

We constructed a test set, TestSetA, using RNA trusted
structures compiled from most of the same studies that pro-
vided the training sets (Dowell and Eddy 2004; Andronescu
et al. 2007, 2010) (the set from Do et al. [2006] is small and
was fully incorporated in the training set). In addition, we
obtained trusted RNA structures from one more study that
tested thermodynamic models (Lu et al. 2009). These four
benchmarks include sequences from eight RNA families:
tRNA, SRP RNA, tmRNA, RNase P RNA, 5S rRNA,
telomerase RNA, group I introns, and group II introns.
The original provenance of the trusted sequences is given in
the Materials and Methods. The test set TestSetA was
constructed by removing nearly identical sequences within
the RNA families and similar sequences between families,
with a final step in which we remove similar sequences to
TrainSetA. TestSetA contains 697 sequences; 51.7% of the
residues in TestSetA are base paired, 2.3% of which are not
A-U, C-G, or G-U base pairs.

While TrainSetA and TestSetA have been constructed to
ensure sequence diversity, they both contain the same types
of RNA structures. In order to explore more structural
diversity, from the Rfam database (Gardner et al. 2011), we
obtained seed alignments for 22 additional RNA families
with known three-dimensional structures and no homology
with either TrainSetA or TestSetA. The 22 Rfam families
include the following: 5.8S rRNA, spliceosomal RNAs (U1,
U4), seven riboswitches, two ribozymes, nine cis-regulatory
RNAs (such as Internal Ribosome Entry Sites, leader and
frameshift RNAs), and bacteriophage pRNA.

From those 22 RNA families, a test set TestSetB was
constructed by selecting sequences from the seed align-
ments with no more than 70% identity among each other,
and a training set TrainSetB by selecting the rest of the
sequences in the seed alignments that have no similarity
with either of the test sets. TestSetB contains 430 sequences;
43.6% of the residues in TestSetB are base paired, of which
8.3% are not A-U, C-G, or G-U base pairs. TrainSetB
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contains 1094 sequences; 46.3% of the residues in TrainSetB
are base paired, 4.3% of which are not A-U, C-G, or G-U
base pairs.

We observe (Fig. 2) that the Rfam-derived sets have a
lower fraction of base pairs and a higher number of
noncanonical base pairs than do the sets derived from the
literature. Regarding the smaller amount of base-pairing,
the annotated Rfam structures are consensus structures for
the multiple alignment and are prone to being underesti-
mates of the base-pairing of any individual structure when
that consensus is imposed on one individual sequence.
Regarding the greater number of noncanonical base pairs,
there are several reason for that. For one, alignment un-
certainty in regions that align poorly could assign base pairs
between misaligned residues. For another, most of the
trusted structures reported in the literature had their non-
canonical base pairs removed when the original benchmark
sets used in TrainSetA were constructed, artificially de-
creasing their numbers. The Rfam-derived sets TrainSetB
and TestSetB have the advantage of providing us with a larger
diversity of secondary structures, although these sets possibly
contain lower-quality structures, and have the bias that most
of the consensus structures reported in the Rfam annotation
of the families are predictions (despite some of the actual
RNAs having solved three-dimensional structures).

A summary of the two training sets and two test sets is
given in Figure 2: (1) The pair TrainSetA/TestSetA is a

standard evaluation benchmark, typical of the literature,
where the training and test set consist of sequences indepen-
dent from each other but where the two sets share the same
RNA structures. TrainSetA is essentially what CONTRAfold
v2.02, Simfold, and ContextFold were trained on. (2) The
pair TrainSetB/TestSetB is also composed of independent
sequences that share the same structures, but for a different
set of structures than those used in the previous case. (3)
Using the combinations TrainSetA/TestSetB and TrainSetB/
TestSetA allows us to test whether methods trained on one
set of structures can predict the other set of independent
structures.

Measures of folding accuracy

For a given (single) sequence, we measure folding accu-
racy by its sensitivity (SEN) and positive predictive value
(PPV)

SEN =
True - Pairs - Predicted

True - Pairs
;

PPV =
True - Pairs - Predicted

Pairs - Predicted
: ð1Þ

Sometimes for simplicity, we use the F measure (or
F1 measure, the harmonic mean of the sensitivity and
PPV) (van Rijsbergen 1979) as a proxy for prediction
accuracy,

FIGURE 2. Description of the training and test sets. All four sets are composed of nonidentical sequences (i.e., no two sequences from one set
have >95% similarity over at least 95% of either sequence). All four sets are composed of dissimilar sequences with respect to each other (i.e., no
sequence from one set when compared by blast to another set has a hit with an e-value smaller than 0.0001 over at least 40% of the sequence). In
addition, the literature-based ‘‘A’’ sets and the Rfam-based ‘‘B’’ sets are, by construction, structurally dissimilar.
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F =
1

2

1
1

SEN + 1
PPV

: ð2Þ

For an entire test set of sequences, we use the total SEN
and total PPVs,

total - SEN =
total - True - Pairs - Predicted

total - True - Pairs
;

total - PPV =
total - True - Pairs - Predicted

total - Pairs - Predicted
: ð3Þ

Unless otherwise stated, our predictions are obtained with
the C-MEA method (Do et al. 2006). By varying a tunable
parameter, C-MEA produces ROC curves between SEN and
PPVs. A particularly useful number to describes a given ROC
curve is the ‘‘best F’’ measure, which corresponds to the
maximal F among all the points depicted in the ROC curve.

Complex SCFGs implemented in TORNADO

Previous SCFGs used for RNA structure prediction were
‘‘lightweight’’ (Dowell and Eddy 2004). Can ‘‘heavyweight’’
SCFGs, of the complexity of the nearest-neighbor model,
compete with state of the art thermodynamic or discrimina-
tive models? To address this question in a controlled fashion,
we first used TORNADO to implement a grammar emula-
tion of ViennaRNA (Hofacker 2003), named ViennaRNAG,
and a grammar emulation of CONTRAfold (Do et al. 2006),
named CONTRAfoldG. This allows us to do two kinds
of comparisons: ViennaRNA to thermo-ViennaRNAG
(ViennaRNAG with thermodynamic free-energy parameters)
asks if our emulation is accurate. Then, comparing thermo-
ViennaRNAG to probabilistic-ViennaRNAG (ViennaRNAG

trained as a probabilistic model) asks how well probabilities
perform relative to thermodynamic parameters, and anal-
ogously for discriminative methods using CONTRAfold
and CONTRAfoldG.

TORNADO grammar emulation of the thermodynamic
model ViennaRNA

The TORNADO grammar ViennaRNAG incorporates all
the same features with essentially the same parameters as
native ViennaRNA. Although both ViennaRNA and
ViennaRNAG have the same architecture and score the
same features, the number of free parameters in each
necessarily differs. This is because thermodynamic models
in some places assume zeros when a probabilistic model
uses a probability distribution that needs to be normalized.
Additionally, we were careful to write an unambiguous
grammar (in order to avoid training ambiguities) (Giegerich
2000). This requires the use of a few additional nonterminals
(especially for dangles and mismatches). ViennaRNA uses
about 12,700 scores, while ViennaRNAG has 14,307 total free
parameters after tying. All the 12,700 scores of ViennaRNA
are included in ViennaRNAG. For details, see the Mate-
rials and Methods, and for a complete specification of the
grammar, see supplemental files ViennaRNAG.grm and
ViennaRNAGz_wcx.grm.

The control experiment of comparing native ViennaRNA
with the TORNADO-emulation ViennaRNAG using the
thermodynamic parameters is presented in Figure 3. A
small difference is observed in favor of the native
implementation for TestSetB. The difference is almost
nonexistent for the important section (around the best
F-value) of the ROC curves.

FIGURE 3. Comparison of the standard methods ViennaRNA and CONTRAfold to their TORNADO grammar emulations parameterized
with the native values. Panel A shows results for TestSetA, and panel B shows results for TestSetB. Sensitivity and positive predictive value (PPV)
are calculated for structures predicted using the maximal expected accuracy (C-MEA) method Do et al. (2006). The ROC curves have been
obtained by varying a tunable positive parameter from 2�5 to 210. The number depicted on each curve corresponds to the maximal value of the F
parameter, best F (defined in the Materials and Methods).
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TORNADO grammar emulation of the discriminative
model CONTRAfold

The state of the art for folding accuracy is now the CML
method CONTRAfold (Hamada et al. 2009), but ML
methods of similar complexity have not been tested to
our knowledge. We created a TORNADO grammar emu-
lation of CONTRAfold (Do et al. 2006). The TORNADO
grammar CONTRAfoldG incorporates all the features of
native CONTRAfold, except for two small details: the treat-
ment of hairpin loops of zero and one residues, and a
particular contribution for internal coaxials. These two
CONTRAfold features involved complicated dependencies
that would have required too many additional parameters
to reproduce, and in particular for the case of zero and 1-nt
hairpin loops, they did not seem worth reproducing. We
show that performance is not degraded by those small
differences.

CONTRAfoldG has 1276 total free tied parameters after
tying, compared to the approximately 300 independent
parameters in native CONTRAfold. CONTRAfoldG includes
all the parameters of native CONTRAfold. It also needs to
incorporate a few more to deal with the particular way in
which CONTRAfold handles bulges of length one. More
details can be found in supplemental files CONTRAfoldG.grm
and CONTRAfoldGu_wcx.grm (the latter removes an ambi-
guity present in the native CONTRAfold implementation and
formally imposes Watson-Crick complementarity).

The control result of comparing native CONTRAfold
with the TORNADO-emulation CONTRAfoldG using
the original parameters is presented in Figure 3. The
CONTRAfoldG emulation seems to reproduce the original
results with a systematic but small advantage. Incidentally,
both our test sets confirm previous results regarding the
better performance of CONTRAfold relative to ViennaRNA
(Hamada et al. 2009).

In Figure 3, we also observe that for either ViennaRNA
or CONTRAfold, the performance on both test sets is
comparable in terms of ‘‘best F’’ achieved, although for the
Rfam-derived set (TestSetB) that best F is achieved at higher
sensitivity relative to PPV than in the literature-based
method (TestSetA), which is consistent with the expectation
that TestSetB has some number of unannotated base pairs.

A spectrum of SCFGs of increasing complexity

The standard nearest-neighbor model of RNA secondary
structure implemented in RNA folding programs includes
stacking of base pairs, dangles and mismatches for stacked
pairs or for terminal pairs in hairpin loops and internal
loops, specialized 1 3 2 and 2 3 2 internal loops, 1-nt
bulges, length distributions in loops, and base pairs of the
G-C, A-U, or G-U type (Xia et al. 1998). Expanded versions
of the nearest-neighbor model are starting to explore
thermodynamic parameters for free bases in three-branch
multiloops (Liu et al. 2011). SCFGs can model all those

features and more, and TORNADO gives us the opportu-
nity to test the relative importance of the different elements
of the nearest-neighbor model, plus elements beyond those
in the current nearest-neighbor model.

In order to assess the contribution of the different
features in the nearest-neighbor model, we created a spec-
trum of TORNADO grammars such that we either delete
terms from a more complex grammar (ViennaRNAG or
CONTRAfoldG) or add terms to a simpler grammar (g6)
or modify an intermediate grammar (such as the basic_
grammar in Fig. 1) in either direction.

We have also added new features beyond the current
nearest-neighbor model such as specific distributions for
bulges of length 1 and 2, dangles in bulges, dangles and
mismatches in multiloops with an arbitrary number of
branches, coaxial stacking, and length distributions for multi-
loops and externally emitted bases. All the features that did not
degrade performance relative to ViennaRNAG were combined
together in grammar ‘‘ViennaRNAGz_bulge2_ld_mdangle.’’
We have alternative versions of all grammars allowing
either all 4 3 4 possible base pairs or just the G-C, A-U,
or G-U types. For details, see Table 1.

Training and performance of complex SCFGs

Benchmark of probabilistically trained ViennaRNAG
and CONTRAfoldG shows the need for structurally diverse
training sets

For the complex SCFGs that have nonprobabilistic analogs,
how do their nonprobabilistic parameterizations compare to
a probabilistically trained estimation of the same parameters?
To answer that question, we trained ViennaRNAG and
CONTRAfoldG using the literature-derived training set
TrainSetA, which has close connections to the training
sets used with the other trained methods we would like to
compare with.

In Figure 4A, we show a standard training/test paradigm.
We observe that the probabilistic grammars outperform
their thermodynamic and discriminative counterparts:
probabilistic-ViennaRNAG improves from 53.7% to 60.2%
relative to thermodynamic-ViennaRNAG, and probabilistic-
CONTRAfoldG improves slightly from 57.2% to 57.9%
relative to CML-CONTRAfoldG.

However, this gain is an artifact due to overfitting, as
shown in Figure 4B, where the training set (TrainSetA) and
the test set (TestSetB) are structurally nonhomologous.
Figure 4B shows (in contrast to Fig. 4A) that probabilistic-
ViennaRNAG relative to thermodynamic-ViennaRNAG
improves only from 54.1% to 55.0%, while probabilistic-
CONTRAfoldG performance decreases from 57.9% to
54.1% relative to CML-CONTRAfoldG.

Overfitting is not limited to probabilistic models. In
Figure 4, we also see that among the currently existing
statistical methods, ContextFold suffers from the largest
effect of differential performance between TestSetA and
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TestSetB (best F for TestSetA is 64.4%, and best F for
TestSetB is 49.0%). Incidentally, Figure 4 shows that
CONTRAfold (as represented by its emulation), even if it

is a trained model, is not as affected by overfitting
(CONTRAfold’s best F for TestSetA is 57.2%, and best F
for TestSetB is 57.9%).

FIGURE 4. Performance of probabilistic ViennaRNAG and CONTRAfoldG. Effect of overfitting in models with large number of parameters. Panel A
shows results for TestSetA, and panel B shows results for TestSetB. We compare the performance of ViennaRNAG and CONTRAfoldG using either the
emulation scores or the probabilistic parameters. (The emulation-scores data are the same as in Fig. 3.) The probabilistic versions were trained using
TrainSetA. We compare performances for the test sets TestSetA and TestSetB. We also include results for the method ContextFold, which trains
a discriminative method with many parameters (z50,000) in one of the training sets used to construct TrainSetA (more details in Materials and Methods).

TABLE 1. Probabilistic models exploring different structural features

Total free tied parameters
Grammar

Benchmark
(set best-F %) 4 3 4 bps 6 bps Remarks

g6 48.7 21 11 Pfold grammar (Knudsen and Hein 1999)
g6s 49.4 261 41 Pfold + stacking (Dowell and Eddy 2004)
g6_stem 49.7 294 74 Pfold + stacking + helix length dist
basic_grammar_nostack 56.5 572 532 loop length dist
basic_grammar 56.8 1022 582 loop length dist + stacking
basic_grammar_dangle 57.2 1143 643 basic_grammar + dangles
basic_grammar_coaxial 56.5 1279 629 basic_grammar + coaxial stacking
ViennaRNAGz_S 58.1 1862 892 ViennaRNAGz_SimpleInt without tetraloops
CONTRAfoldGS 58.4 2101 811 CONTRAfoldG with simpler 1-nt bulges
basic_grammar_hpfull 58.8 5342 2202 basic_grammar + hairpin tetraloops + hairpin

closing mismatches
CONTRAfoldG 58.5 5448 1278 CONTRAfold emulation
ViennaRNAGz_SimpleInt 59.5 6105 2495 ViennaRNAG minus 2 3 2,2 3 1 internal loops
ViennaRNAGz_nostack 59.1 90,497 14,257 ViennaRNAG minus stacking
ViennaRNAG 59.9 90,947 14,307 ViennaRNA emulation
ViennaRNAGz_stem 59.5 90,980 14,340 ViennaRNAG + stem length dist
ViennaRNAGz_ld 60.4 91,012 14,374 ViennaRNAG + all emissions by length dist
ViennaRNAGz_mangle 59.9 91,187 14,397 ViennaRNAG + multiloop mismatches
ViennaRNAGz_coaxial 59.2 91,200 14,350 ViennaRNAG + coaxial stacking
ViennaRNAGz_bulge2 59.9 91,670 14,400 ViennaRNAG + explicit 1,2 bulges
ViennaRNAGz_bulge 59.9 91,766 14,436 ViennaRNAG + explicit 1,2 bulges + bulge dangles
ViennaRNAGz_bulge2_ld_mdangle 60.2 91,977 14,557 ViennaRNAG + explicit 1,2 bulges + all length dist +

multiloop mismatches

We have constructed derivative models (with more or less complexity) starting from four key grammars highlighted in bold. All models have
been implemented within TORNADO. The third and fourth columns provide the total number of tied parameters before and after imposing base
pairs to be canonical. Models are ranked by increasing number of parameters. Parameters include transitions, emissions, and length
distributions (dist). Each model is specified by a description file given by the grammar name followed by ‘‘.grm’’ (or ‘‘_wcx.grm’’ in the case of
restricting to just A-U, G-C, and G-U base pairs) provided in the Supplemental Material, and written in TORNADO parsing language. A more
detailed description of the grammars can be obtained by using the program grm-parse on the grammar description files. The second column
provides performance for TestSetA + TestSetB. All grammars were trained on TrainSetA + 2 3 TrainSetB.
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We used a Bayesian bootstrapping technique (Rubin
1981) to estimate the standard statistical error in these
results. The bootstrapped standard deviation (after 10
resamplings) for SEN and PPV are of the order of 1% for
TestSetA and z2% for TestSetB.

We made sure that ViennaRNA and CONTRAfold are
the appropriate comparisons by comparing their perfor-
mance to other existing methods, including both thermo-
dynamic (UNAFold and RNAstructure) as well as statistical
methods (Simfold). These methods show concordance
between both test sets, but performance is poor overall.
For UNAFold, best F is 51.0% for TestSetA and 53.3% for
TestSetB; for RNAstructure, best F is 53.5% for TestSetA
and 53.8% for TestSetB; and for Simfold, best F is 54.0%
for TestSetA and 55.3% for TestSetB.

We made sure that C-MEA is a reasonable approach to
produce predicted structures by comparing to structures
predicted by the G-CEN MEA method. G-CEN shows very
small variations with respect to C-MEA, oftentimes in the
positive direction, but G-CEN does not manifest significant
differences from method to method. For instance, the best
F-values reported in Figure 4 change for probabilistic-
CONTRAfoldG from 57.9% to 58.2% for TestSetA and
from 57.9% to 58.0% for TestSetB. For probabilistic-
ViennaRNAG, best F changed from 60.2% to 60.3% for
TestSetA and from 54.1% to 54.2% for TestSetB. The
G-CEN ROC curves are very similar to the C-MEA ROC
curves (data not shown).

TrainSetA uses nine structurally distinct RNA families
and compiles all the benchmarks used in the literature for
training RNA secondary structure prediction methods. To
test the hypothesis that training complex statistical models
requires larger structural diversity than just nine different
RNA structure families, we constructed another training
set, TrainSetB, which includes RNA structures from 22
Rfam RNA families nonhomologous to those used in
TrainSetA (see Materials and Methods). TrainSetB contains
1094 sequences, and it has no similar sequences with
TrainSetA or any of the test sets TestSetA and TestSetB.

In Table 2, we show that for the larger grammars, both
training sets overfit the test set that contains structurally

similar RNA sequences. The small ‘‘g6’’ grammar is not
affected by overfitting as seen by the similar performance of
both test sets under all the different training combinations.
However, the overtraining effect already appears for
‘‘basic_grammar’’ where the performance of training set
TrainSetA is much better for TestSetA (structurally homol-
ogous to TrainSetA) than for TestSetB (structurally dis-
similar to TrainSetA) and vice versa. We suspect that the
distinct specification of hairpin loops, bulges, internal
loops, and multiloops that ‘‘basic_grammar’’ introduces
relative to ‘‘g6’’ is responsible for this effect. We have
observed (by training grammars on particular families) that
the relative occurrence of hairpin loops versus bulges or
internal loops or multiloops in different RNA families is
highly variable. We also observed (by making chimeric
parameterizations taking specific counts from different
training sets) that all types of distributions (transitions,
emissions and loop lengths) have a contribution to this
overfitting effect (data not shown).

We have shown that the literature-based training set
TrainSetA does not exhibit the amount of structural
diversity necessary to be a good training set for RNA
secondary structure prediction when using statistical
methods with large numbers of parameters, and that this
affects both probabilistic and discriminative methods. In
Table 2, we also show that combining the two training sets
(as in TrainSetA + 2 3 TrainSetB) can bring the perfor-
mance in both sets to comparable values and still above
their overtrained values. We do not know how well these
RNA families reflect general properties of RNA secondary
structure and how well TrainSetA + 2 3 TrainSetB would
perform with a hypothetical new RNA structural class. In
addition, it would be much more satisfactory to have
a well-balanced training set with different structures and
sequences instead of performing an ad hoc weighting of
different groups of sequences as we do here.

More complex and realistic features require larger training
sets than are currently available

Even if we supposed that TrainSetA + 2 3 TrainSetB was
an unbiased sample of RNA structures, it still might be

TABLE 2. Effect of the structural diversity in the training set

Grammar

TrainSetA
(set best F %)

TrainSetB
(set best F %)

TrainSetA + TrainSetB
(set best F %)

TrainSetA +

2 3 TrainSetB
(set best F %)

TestSetA TestSetB TestSetA TestSetB TestSetA TestSetB TestSetA TestSetB

g6 47.8 46.2 48.5 49.3 48.7 47.0 49.1 47.5
basic_grammar 56.7 53.6 47.5 54.6 57.0 56.5 56.9 56.5
CONTRAfoldG 57.9 54.1 44.4 56.1 58.4 57.4 58.3 58.6
ViennaRNAG 60.2 54.4 42.8 56.0 60.4 57.7 60.2 59.4

We present results using four different training sets combinations for four probabilistic grammars with increasing degree of complexity. The ‘‘A’’
training and test sets are structurally distinct from the ‘‘B’’ sets, but within a type (‘‘A’’ or ’’B’’); sequences belong to the same structural RNA
class. All four sets are dissimilar at the sequence level.
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insufficient for the accurate parameterization of a complex
grammar. A complex grammar includes parameters for
features that occur rarely, such as stacking of noncanonical
base pairs. We need to observe enough counts of these
features to estimate a probability parameter. In probabilis-
tic models, we can estimate the uncertainty in our param-
eters estimates resulting from a limited number of counts.

For a given grammar probability distribution {ti} for
either residue emissions, loops, or transitions (such that
+iti = 1), the ML estimator of the parameters is t̂ i = Ci=C,
where Ci is the observed counts associated to ti, and C
stands for the total observed counts for that distribution.
The observed counts {Ci} are a multinomial random
variable with standard deviation s Cið Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cti 1� tið Þ

p
:

Thus, the estimated ML probabilities constitute another
multinomial random variable with standard deviation
s t̂i = Ci=Cð Þ= s Cið Þ

C =
ffiffiffiffiffiffiffiffiffiffiffi
ti 1�tið Þ

C

q
. Thus the uncertainty in the

probabilistic parameters due to the size of the training set is
proportional to

ffiffiffiffiffiffiffiffi
1=C

p
.

In Table 3, we observe that residue emission distri-
butions are the most affected by parameter sampling
uncertainty. The total number of residue counts is approx-
imately the same for all grammars, and of the order of
630,000. However, the number of emissions distributions
increases substantially for larger grammars, so that, for
instance, for ViennaRNAG we have some distributions with
a relative uncertainty of 0.56. Sampling variability affects
the 1 3 2 and 2 3 2 internal loop emission distributions
the most. Larger data sets are required for the parameter-
ization of these internal loop emission distributions, as well
as for the parameterization of other multiple emissions
with high-order contexts. Similarly, training of noncanon-
ical base pairs is affected by undersampling, with many
distributions lacking any observations at all (data not
shown). For transition distributions, the variability remains
more uniform as the complexity of the grammar increases.
The total number of transition counts is of the order of

450,000 (for grammars that use loop length distributions).
The number of transition distributions (despite unambig-
uous dangles and mismatches) does not suffer as dramatic
an increase as that of residue emissions, and uncertainty
remains relatively stable. The situation for loop length
distributions is similar to that of transition distributions
(data not shown).

More complex and realistic features have incremental effect
on folding accuracy

Despite the limitations of our training sets, we can start to
assess the relative importance of the different elements of
RNA secondary structure, using the range of SCFGs in-
troduced before. There is some variability for the different
combinations of training and test sets, but overall we
observe that a few distinct features dominate the difference
from the worse to the best performing models and that
other features (usually very costly in number of parameters)
have small incremental effect. We present results using
training set TrainSetA + 2 3 TrainSetB on the joint test
set TestSetA + TestSetB (Table 1; Fig. 5), and we will describe
where the results for this combination are not consistently
observed for other training/testing combinations.

The most important improvement (of z7%–8% de-
pending on the test set, as measured by best F) occurs by
expanding simple lightweight SCFGs in order to distinguish
hairpin loops, bulges, and internal loops characterized by
specific transition, length, and emission distributions. That
is the major difference between grammars ‘‘g6’’ and ‘‘basic_-
grammar_nostack’’ in Table 1. This increases the number of
parameters by about 25-fold (from 21–572 in this particular
implementation that fits length distributions up to 30 nt)
but still keeps the uncertainty in the determination of
parameters close to that of the simple SCFGs (see Table 3).

Next in importance come three independent structural
elements: mismatches for hairpin loops and internal loops,
specific hairpin tetraloops, and stacking of base pairs. All

TABLE 3. Effect of training set size on SCFGs with large number of parameters

Grammar

Residue emission distributions Transition distributions

Variability (1=
ffiffiffiffi
C
p

) Variability (1=
ffiffiffiffi
C
p

)

No. dist Range Mean 6 SD No. dist Range Mean 6 SD

g6 2 [0.0016, 0.0021] 0.0018 6 0.0004 3 [0.0015, 0.0021] 0.0017 6 0.0004
basic_grammar_nostack (6 bp) 8 [0.0025, 0.0119] 0.0049 6 0.0032 8 [0.0025, 0.0121] 0.0056 6 0.0033
basic_grammar (6 bp) 18 [0.0025, 0.0221] 0.0091 6 0.0055 8 [0.0025, 0.0121] 0.0056 6 0.0033
basic_grammar_hpfull (6 bp) 30 [0.0025, 0.0851] 0.0196 6 0.0182 8 [0.0025, 0.0121] 0.0056 6 0.0033
ViennaRNAGzS (6 bp) 53 [0.0026, 0.0589] 0.0198 6 0.0136 12 [0.0025, 0.0203] 0.0089 6 0.0058
ViennaRNAGz_SimpleInt (6 bp) 59 [0.0026, 0.0851] 0.0227 6 0.0163 12 [0.0025, 0.0203] 0.0089 6 0.0058
ViennaRNAGz (6 bp) 163 [0.0024, 0.5774] 0.1189 6 0.1108 12 [0.0025, 0.0203] 0.0091 6 0.0057
ViennaRNAGz_bulge2_ld_mdangle

(6 bp)
202 [0.0035, 0.5774] 0.1179 6 0.1031 13 [0.0025, 0.0203] 0.0109 6 0.0051

For a selection of SCFGs, we report statistics regarding the variability on the estimation of parameters due to sample size. All grammars were
trained on TestSetA + 2 3 TestSetB.
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three improve performance slightly, but their relative con-
tribution is somewhat dependent on the particular training
and test set, although stacking is usually the weakest signal.
In general, the joint description of these three elements
does not produce an additive increase in performance. In
Figure 5, we show that for the particular training set/test set
combination used in this section, the largest impact is
achieved by adding terminal mismatches and specific
tetraloops in the description of hairpin loops with a best
F increase of 2.0% (comparison of ‘‘basic_grammar’’ with
‘‘basic_grammar_hpfull’’). Next comes the effect of adding
mismatches with a best F increase of 1.3% (comparison of
‘‘basic_grammar’’ with ‘‘ViennaRNAGz_S’’). Finally the
least important contribution is due to base-pair stacking
with a best F increase of <0.5%. Similar stacking effects are
also observed by comparing grammars ‘‘g6’’ with ‘‘g6s,’’
‘‘basic_grammar_nostack’’ with ‘‘basic_grammar,’’ and
‘‘ViennaRNAGz_nostack’’ with ‘‘ViennaRNAG’’ in Table 1.

We find almost no improvement when introducing a
length distribution to model the actual nongeometric dis-
tribution of helix lengths (helices between 4 and 7 nt are the
most abundant). This effect is seen by comparing gram-
mars ‘‘g6’’ with ‘‘g6_stem,’’ and ‘‘ViennaRNAG’’ with
‘‘ViennaRNAGz_stem’’ in Table 1. Coaxial stacking of
helices also does not seem to provide any overall improve-
ment as seen by comparing grammars ‘‘basic_grammar’’

with ‘‘basic_grammar_coaxial’’ and ‘‘ViennaRNAG’’ with
‘‘ViennaRNAGz_coaxial’’ in Table 1.

The incorporation of other features that are thought to
be important in RNA secondary structure tends to improve
performance only in small increments. For instance, the 1 3

2- and 2 3 2-specific distributions for internal loops (with
contextual dependence on both closing base pairs) increase
the number of parameters from 6000 (‘‘ViennaRNAGz_
SimpleInt,’’ or the very closely related ‘‘basic_grammar_
hpfull’’) to z92,000, but only improve performance by
z0.5%. The sample variances for some of those residue
emissions are very large, leaving the possibility that a larger
training set could be able to produce better results for these
distributions.

DISCUSSION

In this article, we show that SCFGs can describe generative
unambiguous models for RNA structure as complex as
those of thermodynamic models. We have developed a large
family of related SCFGs that cover the spectrum from the
simpler grammars to complex grammars detailing the
nearest-neighbor model and beyond (Table 1). In particu-
lar, we present two SCFG emulations of current state of the
art models, one thermodynamic (ViennaRNA) and the
other statistical (CONTRAfold) (Fig. 3). The generation of
all the different SCFGs as well as their training and testing

FIGURE 5. A gradient of probabilistic grammars. We have selected seven grammars from a larger range of SCFGs to illustrate the impact on
performance of some of the salient features of RNA secondary structure. The simplest grammar presented is ‘‘basic_grammar_nostack,’’ which
specifies loops with length distributions up to internal loops but does not include stacking or mismatches. The remaining six grammars add
features cumulatively on the previous one. ‘‘basic_grammar’’ adds stacking relative to ‘‘basic_grammar_nostack.’’ ‘‘ViennaRNAGz_S’’ adds
mismatches for hairpin, 1-nt bulges, and internal loops. ‘‘basic_grammar_hpfull’’ adds specific tetraloop emissions relative to ‘‘basic_grammar.’’
‘‘ViennaRNAGz_SimpleInt’’ combines both mismatches and specific tetraloop emissions. ‘‘ViennaRNAG’’ adds specific distributions for 1 3 1, 1
3 2, and 2 3 2 internal loops. Finally, ‘‘ViennaRNAGz_bulge2_ld_dangle’’ incorporates several other features not used so far in any nearest-
neighbor model. All SCFGs were trained using TrainSetA + 2 3 TrainSetB. We present results for the joint set TestSetA+TestSetB. More details
about the grammars are provided in Table 1. More details about the training of these grammars are provided in Table 3.
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has been aided by the introduction of TORNADO, a specific
language to parse RNA grammars into a ‘‘super-grammar’’
that can fit all features of RNA structure used so far and
more.

Previously, statistical models of RNA folding implement-
ing the nearest-neighbor model have all been chosen to be
discriminative, not probabilistic. One reason for this ap-
pears to be a misconception that SCFGs of the nearest-
neighbor model cannot be built (Do et al. 2006); another
reason is the belief that discriminative models have more
freedom by not imposing normalization constraints (Lafferty
et al. 2001). This work shows that is not the case. SCFGs and
CML models of similar complexity have similar perfor-
mance. The choice between a probabilistic and a discrimina-
tive model is not so obvious. We believe that probabilistic
models will show advantages in integrating other sources of
information; in addition, they are easier to train.

From a practical standpoint, for some applications, we
need to combine an RNA folding model with a model of
other type of information (comparative analysis, experi-
mental accessibility), and we want to know the trade-offs
between performance and number of parameters, given the
available training data. TORNADO allows us to perform
such exploration of models. We show that for training sets
comparable to the ones used here, it seems appropriate to
use any of the grammars with 1000–2000 parameters (with
mismatches, tetraloops and stacking in some combination)
but to leave aside more complex features for which the gain
in performance is small.

We have shown that for complex models (SCFGs or
otherwise), performance is highly sensitive to the structural
diversity present in the training sample, not just to the total
size and sequence diversity of the sample. In order to con-
struct robustly trained models and to be able to benchmark
different methods, we need to have a larger number of
structurally diverse RNA families (perhaps of the order to
50 to 100 structurally distinct families) each containing a
large number of diverse single sequences (perhaps of the
order of 50 to 100) with well annotated structures.

Perhaps surprisingly, we are far from having this amount
of RNA structural data for training statistical methods.
Although databases like Rfam collect on the order of
a thousand different RNA families, many of these families
are structurally similar (e.g., Rfam v10.0 has 477 miRNA
families), and the number of dissimilar sequences per
family is low (except for a few families such as tRNA and
rRNA). Perhaps more importantly, the quality of the
annotation of the individual structures is also poor, because
Rfam is a database of multiple sequence alignments and
consensus structures, not individual structures. In addition,
the consensus structure itself is frequently just a prediction,
often by one of the methods we would be benchmarking.

Ideally, we would collect individual RNA structures from
three-dimensional data, but the number of known RNA
tertiary structures remains relatively small. Databases such

as compaRNA (Puton et al. 2011) that harvest RNA
structures from the Protein Data Bank include (after
removing rRNAs) only about 250 unique sequences, half
of which are <33 nt. Three-dimensional data would also
allow us to extract accurate information regarding non-
canonical pairs, information that is unreliable in current
RNA databases such as Rfam because of inconsistent
annotation. At the moment, existing annotation of non-
canonical pairs is quite sparse and is not well integrated
into a standard sequence-structure annotation (Nagaswamy
et al. 2000; Stombaugh et al. 2009). Standardized methods
for archiving those individual sequences and structures are
also needed (Gardner and Bateman 2009; Bateman et al.
2011).

Therefore, a main conclusion of this work is that
statistical methods for RNA secondary structure prediction
are promising but held back by the current state of well-
annotated RNA structure databases. We strongly support
the efforts to create databases of individual RNA structures
such as RNA Central (Bateman et al. 2011).

MATERIALS AND METHODS

TORNADO: a specific parser for a large spectrum
of RNA grammars

The TORNADO parser includes a lexical interpreter (file grm_
parsegrammar.lex) that reads the input file, and a compiler (file
grm_parsegrammar.y) that implements a ‘‘meta’’ context-free
grammar (the language parser for RNA grammars) and translates
the input file for a specific RNA grammar into a generic C structure
that can be used by any of the TORNADO inference programs.

Figure 1 shows an example of a grammar described in
TORNADO language. Here we provide some description on how
to write an RNA grammar with TORNADO. A more complete
description is given in the TORNADO documentation. In addition
to the actual grammar rules (which come last), one can specify (in
the following order) arbitrary parameters, transition distributions,
emission distributions, length distributions, and production rules:

1. Arbitrary parameters that might be useful later on in the
definition of the grammar. Parameter names have to start with
‘‘p-.’’ The description is ‘‘def: Æparam_nameæ: Æparam_valueæ.’’
Parameter values can have dependencies on previously defined
parameters. A large number of expressions can be used such as
addition, subtraction, multiplication, division, max, min, log,
exp, and sqrt, among others.

2. Transition distributions can be prespecified for tying purposes;
otherwise they get defined internally for each nonterminal.
Types of tying allowed for transitions are equating different
elements of a given distribution (see Fig. 1), assigning the same
distribution to different nonterminals that have the same
number of rules, or specifying a particular parameterization
of those distributions. Transition distribution names have to
start with ‘‘t-.’’

3. Emission distributions are specified by providing the number of
emissions, contexts, base pairs and the nature of the base pairs,
and the emission name separated by a semicolons. The number
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of emissions and contexts is in principle unconstrained.
Emission names are of the form ‘‘eÆnæ,’’ where Ænæ is a natural
number. Emissions with different properties (i.e., different
number of base pairs or emissions or contexts) can use the
same name.

4. Length distributions need to specify a minimum length,
a maximum length, optionally a ‘‘fit’’ length at which point
one assumes an extrapolated tail, and a name for the
distribution. Possible distribution tails allowed are ‘‘affine,’’
which is used in thermodynamic models, and ‘‘linear,’’ which
in log space corresponds to assuming a geometric distribution
tail. Length distribution names are of the form ‘‘lÆnæ,’’ where
Ænæ is a natural number.

Two types of length distribution are allowed: ‘‘monoseg-
ment,’’ which is used for instance for hairpin loops, and
bulges, and ‘‘disegment’’ (ldist-di), which is used for internal
loops or stems. Each length distribution is associated with a
single residue emission distribution that gets trained but
cannot be tied to external emission distributions. For full
disegment length distributions, one also needs to specify the
minimum number of residues for the left and right segments
(see Fig. 1).

5. Production rules start with a single nonterminal to the left (as
required formally by SCFGs), followed by an arrow ‘‘/’’
followed by an arbitrary number of terminals and nontermi-
nals grouped into rules. A rule is a group of terminals and
nonterminals executed together. The different rules associated
to a nonterminal can be given all together connected by |s or in
separate lines or a combination of the two. The rules for
a given nonterminal do not need to be consecutive, and they
can appear in between the rules for other nonterminals.

Rules are composed of nonterminals and terminals. Non-
terminals are represented by capital letters or by capital letters
followed by a natural number. There are four types of terminals:
residue terminals, which produce a finite number of residues
according to an emission distribution; monosegment and diseg-
ment terminals, which produce a variable number of residues ac-
cording to a length distribution; and the ‘‘empty string’’ terminal.
Residue terminals are represented by any lowercase letter with the
exception of ‘‘e,’’ which is reserved for the ‘‘empty string’’ terminal,
and ‘‘i,’’ ‘‘j,’’ ‘‘k,’’ and ‘‘l,’’ which are reserved for iterators. Each
monosegment terminal ‘‘m. . .m(i,j)’’ uses a monosegment length
distribution. Disegment terminals ‘‘d. . .(i,k) d. . .(l,j)’’ can specify
a disegment length distribution or a monosegment length distri-
bution, in which case TORNADO assumes that the argument of
the distribution is the sum of the two segments. The special stem
disegment terminal ‘‘d. . .(i,k)d9. . .(l,j)’’ is reserved to the emis-
sion of whole stems for which k � i = j � l. Stem disegments
can be tied to external base pair or stacked base pair emission
distributions.

Managing parameters numbers in TORNADO: tied
emission distributions

Thermodynamic models often use the same ‘‘scores’’ in situations
where a normalized probability model has to use different
parameters. For instance, the score of a mismatch depending on
a base pair or of a base pair depending on two unpaired bases is
obtained from the same free-energy function. In a probabilistic

model, those ‘‘scores’’ correspond to two different distributions
(one emits two unpaired residues, the other a base pair) that need
to be tied if we do not want to have an explosion of parameters.
There are ways of tying those distributions by using standard
probabilistic relationships of independence, marginalization, and
conditioning, as if the scores were considered log probabilities.
Some of the tying relationships implemented in TORNADO
follows:

d Joint.
P i; j j i� 1; j + 1ð Þ= P i ji� 1; j + 1ð Þ � P j ji� 1; j + 1ð Þ. An
example from ViennaRNA is the terminal mismatch in a multi-
loop, which is the sum of the two dangles dependent on the
closing base pair. This is equivalent to an assumption of
probabilistic independence.

d Rotation.
P i&j j i� 1; j + 1ð Þ= P j + 1; i� 1 jj&ið Þ � P j&ið Þ=P i� 1; j + 1ð Þ.
An example from ViennaRNA is the parameter for an internal
loop terminal base pair dependent on the left and right internal
dangles, which is set to be identical to the mismatch score of the
two ‘‘rotated’’ dangles depending on the ‘‘rotated’’ base pair.
The probabilistic model adds two more distributions, the base
pair probability P(j&i) and the mismatch probability P(i�1,
j+1), for which their ‘‘equivalent’’ scores in the thermodynamic
model are set to zero by design.

These emission dependencies allow us to establish a link between
a thermodynamic (or score-based) implementation of the nearest-
neighbor model and a probabilistic one while avoiding an
explosion of probabilistic parameters. TORNADO allows other
emission-distribution dependencies such as marginalization, con-
ditional dependencies, and others.

Tying emission distributions helps keep the number of gram-
mar parameters under control. In TORNADO it is also possible to
restrict a base pair emission to be strictly a A-U, G-C, or G-U pair.
For instance, a (A-U;G-C;G-U)-constrained version of the basic
grammar in Figure 1 can be found in the supplemental file
‘‘basic_grammar_wcx.grm.’’ The number of total free tied parame-
ters decreases from 1022 to 582 in the constrained ‘‘basic_grammar.’’
(The basic properties of a grammar can be obtained by running
‘‘grm-parse basic_grammar_wcx.grm.’’)

Managing parameter numbers in TORNADO:
unambiguous dangles

One very distinctive property of the nearest-neighbor model is
having scores for specific residues dangling off other adjacent
bases. Introducing dangles in a generative model unambiguously
requires adding some extra nonterminals, but this can be done
quite systematically. Starting from the simple grammar in Figure
1, adding dangles at the end of helices requires splitting the role of
the S (start) nonterminal into two new nonterminals: S+ (for
which a left dangle has been emitted previously; thus, one is free to
add more residues to the left) and S� (for which no bases can ever
be emitted to the left). In addition, the F0 nonterminal (signaling
the start of a helix) has to be replaced by four nonterminals: F0++

(at which point left and right dangles have been generated; thus,
the helix-starting base pair can be conditioned on the two
previously emitted left and right bases), F0�+ (at which point
right dangle(s) have been emitted but no left dangle is allowed;
thus, the helix-starting base pair can be conditioned only on the
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previously emitted right base), F0+� (left dangles have been
generated but no right dangles are allowed; thus, the helix-starting
base pair can only be conditioned on a left dangle), and F0�� (in

which case no dangles have been emitted so far; thus, the helix-
starting base pair cannot be conditioned on anything). The new
rules (in TORNADO pseudo-code) are as follows:

Internal mismatches follow a similar design in generative
models. New nonterminals M2ab, Mab, M1ab, and Rab, (with
a,b = {+,�}) need to be introduced for bookkeeping of

whether dangles have been already emitted (+) or not (�).
The rules for internal mismatches in TORNADO pseudo-code
are,

See supplemental file ‘‘basic_grammar_dangle.grm’’ for the actual
TORNADO code for adding dangles to the simple grammar in
Figure 1. Assuming that there are distinct left and right dangle distri-
butions and that mismatches are independent and the same whether
they appear externally or in loops (the actual nearest-neighbor model
is more complicated than that), the number of total free tied
parameters for the simple grammar increases from 1022 to 1143.

One can also add prespecified values to all of the grammar
transition, emission, and length parameters, for instance, to
implement an existing model with specific parameter values. As
an example, a full description of the TORNADO-emulations of
the ViennaRNA and CONTRAfold models can be found in the
supplemental files ViennaRNAG.grm and CONTRAfoldG.grm.

Given an input file (like Fig. 1), TORNADO interprets and
validates the grammar and automatically defines dynamic pro-
gramming recursions for the different inference programs in
correct hierarchy of nonterminals. This description language is
sufficient to investigate a wide range of RNA secondary structure
models inspired and extending on the nearest-neighbor model.

Training and testing data sets

We aimed to build a comprehensive benchmark from previously
published studies. The sequence collections used to generate the
training set TrainSetA come from the following sources:

d From Do et al. (2006), file ‘‘S-151Rfam’’ obtained from ‘‘http://
www.cs.ubc.ca/labs/beta/Projects/RNA-Params/.’’ ‘‘S-151Rfam’’

contains 151 sequences, each from one of the different families
tagged as published by Rfam. The total number of residues is
20,581 of which 9848 are base paired (48%). Sequence length
varies from 23–568 nt, with an average of 136 nt. An early
version of CONTRAfold (v1.0) was trained on S-151Rfam.

d From Andronescu et al. (2007), file ‘‘S-Processed-TRA’’ ob-
tained from ‘‘http://www.rnasoft.ca/CG/.’’ ‘‘S-Processed-TRA’’
contains 3439 sequences, 612,414 residues of which 339,420 are
base paired (55%). Sequence length varies from 10–695 nt, with
an average of 178 nt. ‘‘S-Processed-TRA’’ includes a mixture of
SRP RNAs, RNaseP RNAs, tmRNAs, and rRNAs as well as some
other secondary structures inferred from tertiary structures in
the Protein Data Bank. Models trained on ‘‘S-Processed-TRA’’
include CONTRAfold v2.02, and Simfold-CG 1.1.

d From Andronescu et al. (2010), file ‘‘S-Full-Train’’ obtained
from ‘‘http://www.cs.ubc.ca/labs/beta/Projects/RNA-Params/.’’
‘‘S-Full-Train’’ contains 2586 sequences, 691,343 residues of
which 371,428 are base paired (61%). Sequence length varies
from 10–699 nt, with an average length of 267 nt. The type
of RNA molecules in this test set is similar to those of
‘‘S-Processed-TRA.’’ Models trained on ‘‘S-Full-Train’’ include
Simfold-BL*, Simfold-BL-FR*, and ContextFold.

d From Lu et al. (2009), 88 small-subunit and 27 large-subunit
rRNA domains, archived for this work in the Supplemental
Material under the name ‘‘rRNAdom.’’ ‘‘rRNAdom’’ contains a
total of 45,700 residues, of which 24,382 are base paired (53%).
Sequence length varies from 72–734 nt, with an average length
of 397 nt.

S ! a S + j S�j e # replaces S! a S j F0 S j e

S + ! a S + j e

S + ! F0 + + a S + j F0 +� S�j F0 +�

S� ! F0� + a S + j F0�� S�j F0��

F0 + + ! a : i & j : i� 1; j + 1 F5 i + 1; j� 1ð Þ j a : i & j : i� 1; j + 1 P i + 1; j� 1ð Þ # bp dependent on L + R-dangle

F0 +� ! a : i & j : i� 1 F5 i + 1; j� 1ð Þ j a : i & j : i� 1 P i + 1; j� 1ð Þ # bp dependent on L-dangle

F0�+ ! a : i & j : j + 1 F5 i + 1; j� 1ð Þ j a : i & j : j + 1 P i + 1; j� 1ð Þ # bp dependent on R-dangle

F0�� ! a : i & j F5 i + 1; j� 1ð Þ j a : i & j P i + 1; j� 1ð Þ # bp without dangles

P ! a M2 + + b j a M2 +� j M2�+ b j M2�� # replaces P! M2

M2ab ! M1a + a M + b j M1a�M�b # replace M2! M1 M

Mab ! M1a + a M + b j M1a�M�b j Rab # replace M! M1 M j R

M1+ b ! a M1 + b j F0 + b # replace M1! a M1 j F0

M�b ! F0�b

Ra + ! Ra + a j M1a + # replace R! R a j M1

Ra� ! M1a�:
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Given these sources, the operational definitions we used to
generate TrainSetA (and other sets in this work) are the following:
the sequences of a file are said to be ‘‘nonidentical’’ if no two
sequences in the file have a BLASTN hit of >95% identity over at
least 95% of length of one of the sequences. The sequences of
a target file are ‘‘dissimilar’’ to those of a reference file if no target
sequence has a BLASTN hit against the reference file with an
e-value smaller than 0.0001 over at least 40% of the length of the
target sequence. These are relatively relaxed conditions that would
still allow to survive for instance a full-length RNA together with
a small hairpin (usually extracted from the Protein Data Bank)
from that same molecule. Other more restricted definitions of
similarity were tested, but they reduced the total number of se-
quences too much.

The training set TrainSetA was created by merging all non-
identical sequences from all four sources above and then removing
similar sequences between the sets. The training set TrainSetA
contains 3166 sequences, about half the size of the starting set.
TrainSetA contains a total of 630,279 residues, of which 333,466
are base paired (47.9%). Sequence length varies from 10–734 nt,
with an average length of 199 nt. TrainxSetA contains <0.1%
noncanonical base pairs. The training set TrainSetA can be found
in the Supplemental Material under the name ‘‘TrainSetA.sto.’’
(Files with ‘‘.sto’’ suffix follow the Stockholm format.) Details
regarding the actual occurrences of different RNA types in
TrainSetA are given in Figure 2.

The sequences used to generate TestSetA come from the fol-
lowing sources:

d From Steinberg et al. (1993), 1415 tRNAs obtained from
‘‘ftp.embl.heidelberg.de’’ and archived in the Supplemental
Material under the name ‘‘trna1415_annote.sto.’’ From this
data set, we randomly selected 200 nonidentical sequences, so
that the test set is not dominated by tRNAs (supplemental file
‘‘trna1415_annote_Unique_random200.sto’’).

d From Dowell and Eddy (2004), 81 SRP RNAs (the Signal
Recognition Particle database) (Gorodkin et al. 2001), 97
tmRNAs (the transfer messenger RNA database) (Williams
1999), and 225 RNaseP RNAs (the Ribonuclease P RNA
database) (Brown 1999) archived for this work under the names
‘‘rnabench_srp.stk,’’ ‘‘rnabench_tmRNA.stk,’’ and ‘‘rnabench_
RNaseP.stk,’’ respectively.

d From Lu et al. (2009), 309 5S rRNAs, 37 telomerase RNA, 16
group I introns, and three group II introns archived for this
work under the names ‘‘5s.sto,’’ ‘‘telomerase.sto,’’ ‘‘grpI.sto,’’
and ‘‘grp2w.sto,’’ respectively.

d From Andronescu et al. (2007), file ‘‘S-Processed-TES’’ with
974 sequences, obtained from ‘‘http://www.rnasoft.ca/CG/.’’
The type of RNA molecules in this test set is similar to those
of ‘‘S-Processed-TRA.’’ ‘‘S-Processed-TES’’ has been used in
previous benchmarks in conjunction with ‘‘S-Processed-TRA’’
as a training set (Andronescu et al. 2007).

d From Andronescu et al. (2010), file ‘‘S-Full-Test’’ with 659
sequences obtained from ‘‘http://www.rnasoft.ca/CG/.’’ The
type of RNA molecules in this test set is similar to those of
‘‘S-Processed-TRA.’’ ‘‘S-Full-Test’’ has been used for bench-
marking in conjunction with ‘‘S-Full-Train’’ as a training set
(Andronescu et al. 2010; Zakov et al. 2011).

TestSetA was created by merging all nonidentical sequences from
all sources above and then removing similar sequences between

the sets. In addition, we removed all the sequences similar to the
training set TrainSetA. TestSetA contains 697 sequences, 135,939
residues of which 70,214 are base paired (51.7%). Sequence length
varies from 10–768 nt, with an average length of 195 nt. TestSetA
contains 2.3% noncanonical base pairs. TestSetA can be found in
the Supplemental Material under the name ‘‘TestSetA.sto.’’ Details
regarding the actual sequences present in TestSetA are given in
Figure 2.

The literature-based TrainSetA/TestSetA benchmark describes
mainly nine distinct RNA secondary structures (with small
variations such as the short bacterial versus the large eukaryotic
SRP RNAs), and a few small hairpins. (The ‘‘S-151Rfam’’ set does
have more structural variation, but because it includes only one
sequence per RNA family, the actual effect of that diversity in
training is almost negligible.) We used Rfam v10.0 section of ‘‘42
families with three dimensional structure’’ (‘‘http://rfam.sanger.
ac.uk/family/browse/with_structure#A’’) to construct a set that is
structurally independent from TrainSetA, a set containing known
and diverse structures and also with a relatively large sample of
individual sequences. From the 31 families left after removing the
ones already included in TrainSetA/TestSetA, we selected se-
quences from their seed alignments with no more than 70%
identity among each other. Finally, 22 RNA families (430 se-
quences total) survived as being dissimilar to TrainSetA and
became the test set TestSetB. TestSetB is composed of 14 5.8S
rRNAs, 18 U1 spliceosomal RNAs, 45 U4 spliceosomal RNAs, 233
riboswitches (from seven different families: FMM, glmS, lysine,
Purine, PreQ1, SAM and TPP), 116 cis regulatory elements (from
nine different families), three ribozymes, and one bacteriophage
pRNA. TestSetB contains 430 sequences, a total of 52,097 residues
of which 22,728 are base paired (43.6%). Sequences in TestSetB
vary in length from 27–244 nt, with an average of 121 nt. In
TestSetB, 8.3% of the base pairs are noncanonical base pairs.

We also created a training set TrainSetB using the 22 Rfam
families above, by selecting the sequences in the seed alignments
dissimilar with either TestSetB, TrainSetA, or TestSetA. TrainSetB
contains 1094 sequences, a total of 112,398 residues of which
52,065 are base paired (46.3%). Sequence length varies from 27–
237 nt, with an average length of 103 nt. TrainSetB contains 4.3%
noncanonical base pairs.

All four sets are dissimilar at the sequence level. In addition, the
pair ‘‘TrainSetB/TestSetB’’ contains a set of 22 diverse structures
mostly different from those included in the pair ‘‘TrainSetA/
TestSetA.’’

Measures of folding accuracy

TORNADO implements two slightly different methods to calcu-
late the predicted secondary structure from the posterior probabil-
ities of base pairs. The C-MEA method (Do et al. 2006) maximizes
the sum of odd ratios g

Pi;j

PiPj
, and the generalized centroid estimator

(G-CEN) (Hamada et al. 2009) maximizes the sum of Pi,js larger
than 1

1+g
, where Pi,j are the posterior probabilities of positions i and

j being base paired, Pi is the posterior probability of position i being
single stranded, and g is a positive tunable real number. By varying
the parameter g (from 2�5 to 210), we produce ROC curves for SEN
and PPV. For the experiments in this work, we do not observe
significant differences between the two methods.

For a given test set, we use the total-SEN and total-PPV values
described in Equation 3. Other investigators (Mathews et al. 1999;
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Do et al. 2006; Andronescu et al. 2010; Zakov et al. 2011) use
instead the average values over the test set,

mean - SEN =
1

N
+
i=1

N

SEN ið Þ; mean-PPV =
1

N
+
i=1

N

PPV ið Þ: ð4Þ

Generally, total SEN and PPV are smaller than the average ones,
so that one cannot compare results across studies. The difference is
particularly large in our test sets, which contain sequences of quite
variable lengths. As an example, the best F-values reported in Figure
4A if one uses averages instead of total SEN and PPV increase from
53.7% to 63.7% for ViennaRNAG using native parameters; from
60.2% to 70.8% for probabilistic-ViennaRNAG; from 57.2% to
66.4% for CONTRAfoldG with native scores; from 57.9% to 69.0%
for probabilistic-CONTRAfoldG, and from 64.4% to 72.6% for
ContextFold.

The relationship between ‘‘total’’ and ‘‘mean’’ accuracy mea-
sures can be seen more clearly by rewriting total-SEN and total-
PPV (Equation 3) as

total-SEN = +
i=1

N True-Pairs-Predicted ið Þ
True-Pairs ið Þ

True-Pairs ið Þ
total-True-Pairs

= +
i=1

N

SEN ið Þ True-Pairs ið Þ
total-True-Pairs

; ð5Þ

total-PPV = +
i=1

N True-Pairs-Predicted ið Þ
Pairs-Predicted ið Þ

Pairs-Predicted ið Þ
total-Pairs-Predicted

= +
i=1

N

PPV ið Þ Pairs-Predicted ið Þ
total-Pairs-Predicted

:

ð6Þ

The total sensitivity weights the sensitivity of each sequence
SEN (i) by the fraction of true pairs that it contains, and it weights
the PPV of each sequence PPV (i) by the fraction of total
predicted pairs it contains. On the other hand, in the average
measures all sequences count as equal, although shorter sequences
are easier to predict than longer ones.

Despite the lower absolute values, we consider the ‘‘total’’ method
the more appropriate of the two because it avoids giving too much
weight to small, easier to predict sequences. Unless otherwise stated,
we use total-SEN and total-PPV throughout the article.

Databases and programs

We used the databases Rfam v10.0 from ‘‘http://rfam.sanger.ac.
uk’’ and compaRNA (May 11, 2011) from ‘‘http://iimcb.genesilico.
pl/comparna/.’’ We used several external programs, most of them
alternative RNA secondary structure prediction tools. From
package ViennaRNA v1.8.4, we used program ‘‘RNAfold’’ with op-
tions ‘‘-p -MEA’’ (Hofacker 2003). From package CONTRAfold
v2.02, we used program ‘‘contrafold predict’’ with option
‘‘- -gamma <x>’’ (Do et al. 2006). From package RNAstructure
v5.2, we used program ‘‘partition’’ with default settings followed
by ‘‘MaxExpect’’ with options ‘‘-s 1 -g <x>’’ (Reuter and Mathews
2010). From package UNAFold -3.8, we used program ‘‘hybrid-
ss-min’’ with option ‘‘-s DAT’’ (Markham and Zuker 2008).

From package MultiRNAFold-2.0, we used program ‘‘simfold -p
<paramfile>.’’ The parameter files were downloaded from
http://www.cs.ubc.ca/labs/beta/Projects/RNA-Params/ on January
4, 2011, and correspond to ‘‘parameters_CG1.1.txt,’’ which de-
fines Simfold-CG 1.1; ‘‘parameters_BLstar.txt,’’ which defines
Simfold-BL*; and ‘‘parameters_BLFRstar.txt,’’ which defines Sim-
fold-BL-FR* (Andronescu et al. 2010). From package ContextFold
v1.00, we used program ‘‘Predict’’ with default parameters that
use their best performing model ‘‘StHighCoHigh’’ (Zakov et al.
2011). For sequence comparison, we used blastall 2.2.22.

Availability

The flex/Bison and ANSI C source code for TORNADO v0.1 is
freely available under the GNU General Public License (GPL)
from http://selab.janelia.org/. TORNADO’s code and documen-
tation (version 0.1), the Perl scripts used to generate the ex-
periments, and the data sets needed to reproduced the results in
this work have been collected in a tarball available as part of the
Supplemental Material.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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